17.已知平面向量$\overrightarrow a$=(x,-2),$\overrightarrow b$=(4,-2),$\overrightarrow a$與$\overrightarrow b$垂直,則x是( 。
A.-1B.1C.-2D.2

分析 根據(jù)向量的垂直得出$\overrightarrow{a}$$•\overrightarrow$=4x+4=0求解即可.

解答 解:∵平面向量$\overrightarrow a$=(x,-2),$\overrightarrow b$=(4,-2),$\overrightarrow a$與$\overrightarrow b$垂直,
∴$\overrightarrow{a}$$•\overrightarrow$=4x+4=0,
x=-1,
故選:A.

點(diǎn)評 本題考察了平面向量的坐標(biāo)運(yùn)算,簡單計(jì)算能力,屬于容易題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=n2,等比數(shù)列{bn}滿足:b2=2,b5=16
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某公司的組織結(jié)構(gòu)是:總經(jīng)理之下設(shè)執(zhí)行經(jīng)理、人事經(jīng)理和財(cái)務(wù)經(jīng)理.執(zhí)行經(jīng)理領(lǐng)導(dǎo)生產(chǎn)經(jīng)理、工程經(jīng)理、品質(zhì)管理經(jīng)理和物料經(jīng)理.生產(chǎn)經(jīng)理領(lǐng)導(dǎo)線長,工程經(jīng)理領(lǐng)導(dǎo)工程師,工程師管理技術(shù)員,物料經(jīng)理領(lǐng)導(dǎo)計(jì)劃員和倉庫管理員.用框圖表示這家公司的組織結(jié)構(gòu).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}({x}^{2}+2x+1)}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-2,0)B.(-2,-1)∪(-1,0)C.(-∞,-2)∪(0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.y=ln(4-2x)的定義域?yàn)閧x|x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若樣本1+x1,1+x2,1+x3,…,1+xn的平均數(shù)是10,方差為2,則對于樣本2+x1,2+x2,…,2+xn,下列結(jié)論正確的是(  )
A.平均數(shù)為10,方差為2B.平均數(shù)為11,方差為3
C.平均數(shù)為11,方差為2D.平均數(shù)為12,方差為4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$),ω>0,f($\frac{π}{6}$)=f($\frac{π}{3}$),f(x)在區(qū)間($\frac{π}{6}$,$\frac{π}{3}$)有最小值無最大值,則?的值為( 。
A.$\frac{14}{3}$B.$\frac{13}{3}$C.$\frac{3}{14}$D.$\frac{3}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點(diǎn)A(sin2x,1),B(1,cos(2x+$\frac{π}{6}$)),設(shè)函數(shù)f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$(x∈R),其中O為坐標(biāo)原點(diǎn).
(1)求函數(shù)f(x)的最小正周期
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的最大值與最小值.
(2)求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線xcosα+$\sqrt{3}$y+2=0的斜率的范圍是[$-\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$],傾斜角的范圍是[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π).

查看答案和解析>>

同步練習(xí)冊答案