【題目】已知函數(shù) ,函數(shù) .若函數(shù) 恰好有2個(gè)不同的零點(diǎn),則實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

【答案】B
【解析】令y=f(x)﹣g(x)=0,即有f(x)﹣(ax2﹣x+2)=0,則f(x)+x﹣2=ax2 ,
而f(x)+x﹣2= ,
作函數(shù)y=f(x)+x﹣2與函數(shù)y=ax2的圖象如下,

當(dāng)a<0時(shí),y=f(x)+x﹣2與y=ax2的圖象恒有兩個(gè)交點(diǎn);
當(dāng)a>0時(shí),當(dāng)y=ax2的圖象過點(diǎn)(2,2),可得a= ,
由圖象可得0<a<1時(shí),y=f(x)+x﹣2與y=ax2的圖象有兩個(gè)交點(diǎn).
綜上可得,實(shí)數(shù)a的取值范圍是 ,故答案為:
根據(jù)題意整理f(x)+x﹣2=ax2的解析式并在同一坐標(biāo)系中畫出分段函數(shù)的圖像,再由a的正負(fù)決定拋物線的開口方向找出兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù),進(jìn)而可得到恰好有2個(gè)不同的零點(diǎn),實(shí)數(shù) a 的取值范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形 中, , , , 為線段 的中點(diǎn),將 沿 折起,使平面 平面 ,得到幾何體 .

(1)若 分別為線段 的中點(diǎn),求證: 平面
(2)求證: 平面 ;
(3)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,0),B(3,0),C(3,4),則△ABC的外接圓方程是( )
A.(x-2)2+(y-2)2=20
B.(x-2)2+(y-2)2=10
C.(x-2)2+(y-2)2=5
D.(x-2)2+(y-2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合 ,且A∩B=C,求實(shí)數(shù)x,y的值及A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,三角A,B,C的對(duì)邊分別為a,b,c,其滿足(a﹣3b)cosC=c(3cosB﹣cosA),AF=2FC,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱 中, ,底面三角形 是邊長為2的等邊三角形, 的中點(diǎn).

(1)求證:
(2)若直線 與平面 所成的角為 ,求三棱柱 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , 上有最大值9,最小值4.
(1)求實(shí)數(shù) 的值;
(2)若不等式 上恒成立,求實(shí)數(shù) 的取值范圍;
(3)若方程 有三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為 t為參數(shù)).若以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為 . (Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)求直線l被曲線C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)上任意一點(diǎn)P可向圓x2+y2=( 2作切線PA,PB,若存在點(diǎn)P使得 =0,則雙曲線的離心率的取值范圍是(
A.[ ,+∞)
B.(1, ]
C.[ ,
D.(1,

查看答案和解析>>

同步練習(xí)冊(cè)答案