【題目】如圖,在三棱柱 中, ,底面三角形 是邊長(zhǎng)為2的等邊三角形, 的中點(diǎn).

(1)求證: ;
(2)若直線 與平面 所成的角為 ,求三棱柱 的體積.

【答案】
(1)解:連接 點(diǎn),連接 .因?yàn)? 分別為 的中點(diǎn),所以 ,又 , 所以
(2)解:等邊三角形 中, ,且 , .則 在平面 的射影為 ,故 與平面 所成的角為 .在 中, , ,算得
,所以, 的體積
【解析】(1)根據(jù)題意作出輔助線,利用中位線的直線得到線線平行,再由線面平行的判定定理即可得證結(jié)論。(2)利用等邊三角形三線合一的性質(zhì)得到線線垂直,結(jié)合線面垂直的判定定理得證C D ⊥ 平 面 A1ABB1 , 進(jìn)而得到直線在平面內(nèi)的射影,從而找到線面角,結(jié)合解三角形的知識(shí)代入數(shù)值到三棱柱的體積公式求出結(jié)果即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+ ﹣3lnx(a∈R).
(1)若x=3是f(x)的一個(gè)極值點(diǎn),求a值及f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=﹣2時(shí),求f(x)在區(qū)間[1,e]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A 經(jīng)過(guò)點(diǎn) .
(1)求周長(zhǎng)最小的圓的一般方程;
(2)求圓心在直線 上的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3﹣3x2+1,若f(x)存在唯一的零點(diǎn)x0 , 且x0>0,則a的取值范圍為(
A.(﹣∞,﹣2)
B.(﹣∞,0)
C.(2,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,函數(shù) .若函數(shù) 恰好有2個(gè)不同的零點(diǎn),則實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O是邊長(zhǎng)為 的正方形ABCD的中心,點(diǎn)E、F分別是AD、BC的中點(diǎn),沿對(duì)角線AC把正方形ABCD折成直二面角D﹣AC﹣B; (Ⅰ)求∠EOF的大小;
(Ⅱ)求二面角E﹣OF﹣A的余弦值;
(Ⅲ)求點(diǎn)D到面EOF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年高一新生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對(duì)新生進(jìn)行了水平測(cè)試,隨機(jī)抽取了50名新生的成績(jī),其相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:

分?jǐn)?shù)段

頻數(shù)

選擇題得分24分以上(含24分)

[40,50)

5

2

[50,60)

10

4

[60,70)

15

12

[70,80)

10

6

[80,90)

5

4

[90,100)

5

5

(Ⅰ)若從分?jǐn)?shù)在[70,80),[80,90)的被調(diào)查的新生中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰好有2名新生選擇題得分不足24分的概率;
(Ⅱ)在(Ⅰ)的條件下,記選中的4名新生中選擇題得分不足24分的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某冷飲店為了解氣溫變化對(duì)其營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份銷售淡季中5天的日營(yíng)業(yè)額y(單位:百元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表所示:

x

3

6

7

9

10

y

12

10

8

8

7

(Ⅰ)判定y與x之間是正相關(guān)還是負(fù)相關(guān),并求回歸方程 = x+
(Ⅱ)若該地1月份某天的最低氣溫為6℃,預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額
(參考公式: = = = ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= (x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案