已知動圓過點F(-5,0)且與定圓x2+y2-10x-11=0相外切,求動圓圓心的軌跡方程.
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:動圓圓心為M,半徑為r,已知圓圓心為C(5,0),半徑為6,由題意知MF=r,MC=r+6,所以MC-MF=6,即動點M到兩定點的距離之差為常數(shù)6,M在以F、C為焦點的雙曲線左支上,且2a=6,2c=10,從而可得動圓圓心M的軌跡方程.
解答: 解:定圓x2+y2-10x-11=0,可化為(x-5)2+y2=36,則圓心為C(5,0),半徑為6.
設(shè)動圓圓心為M,半徑為r,則MF=r,MC=r+6,
所以MC-MF=6
所以動點M到兩定點的距離之差為常數(shù)6,
所以M在以F、C為焦點的雙曲線左支上,且2a=6,2c=10
所以b=4,
所以動圓圓心M的軌跡方程為:
x2
9
-
y2
16
=1
(x≤-3).
點評:本題考查圓與圓的位置關(guān)系,考查雙曲線的定義,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過直線l上的動點P作圓C的一條切線,設(shè)切點為T,求PT的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2sin(2x+
π
6
)+a+1(a為常數(shù)),若f(x)在[-
π
6
,
π
6
]上最大值與最小值之和為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在2014年全國高校自主招生考試中,某高校設(shè)計了一個面試考查方案:考生從6道備選題中一次性隨機抽取3題,按照題目要求獨立回答全部問題.規(guī)定:至少正確回答其中2題的便可通過.已知6道備選題中考生甲有4題能正確回答,2題不能回答;考生乙每題正確回答的概率都為
2
3
,且每題正確回答與否互不影響.
(Ⅰ)分別寫出甲、乙兩考生正確回答題數(shù)的分布列,并計算其數(shù)學期望;
(Ⅱ)試用統(tǒng)計知識分析比較兩考生的通過能力.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分別是CC1,BC的中點,點P在線段A1B1上,且
A1P
A 1B1

(1)證明:無論λ取何值,總有AM⊥PN;
(2)當λ=
1
2
時,求直線PN與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某家電生產(chǎn)企業(yè)市場營銷部對本廠生產(chǎn)的某種電器進行了市場調(diào)查,發(fā)現(xiàn)每臺的銷售利潤與該電器的無故障使用時間T(單位:年)有關(guān).若T≤2,則銷售利潤為0元;若2<T≤3,則銷售利潤為100元;若T>3,則銷售利潤為200元,設(shè)每臺該種電器的無故障使用時間T≤2,2<T≤3,T>3這三種情況發(fā)生的概率分別是P1,
P2,P3,又知P1,P2是方程25x2-15x+a=0的兩個根,且P2=P3
(Ⅰ)求P1,P2,P3的值;
(Ⅱ)記X表示銷售兩臺該種電器的銷售利潤總和,求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為梯形,AD∥BC,AB=AD=
1
2
BC
,∠ABC=60°,平面PAB⊥平面ABCD,PA⊥PB.
(Ⅰ)求證:BC∥平面PAD;
(Ⅱ)求證:PB⊥AC;
(Ⅲ)是否存在點Q,到四棱錐P-ABCD各頂點的距離都相等?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙等6人按下列要求站成一排,分別有多少不同的站法?
(1)甲不站在兩端;
(2)甲、乙之間恰好相隔兩人;
(3)甲不站在最左邊,乙不站在最右邊.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
x+2
(x>-2),g(x)=
x+2
x
(x>0),若F(x)=f(x)•g(x),則F(x)的值域是
 

查看答案和解析>>

同步練習冊答案