已知函數(shù)f(x)=
x
x+2
(x>-2),g(x)=
x+2
x
(x>0),若F(x)=f(x)•g(x),則F(x)的值域是
 
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意求出f(x),注意x的范圍,問題得以解決.
解答: 解:∵函數(shù)f(x)=
x
x+2
(x>-2),g(x)=
x+2
x
(x>0),
∴F(x)=f(x)•g(x)=
x
,(x>0),
x
>0
,
∴F(x)的值域是(0,+∞).
故答案為:(0,+∞)
點(diǎn)評:本題主要考查了函數(shù)的值域,關(guān)鍵是注意自變量的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓過點(diǎn)F(-5,0)且與定圓x2+y2-10x-11=0相外切,求動圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過x軸上動點(diǎn)A(a,0),引拋物線y=x2+3的兩條切線AP、AQ,切點(diǎn)分別為P、Q.
(Ⅰ)若a=-1,求直線PQ的方程;
(Ⅱ)探究直線PQ是否經(jīng)過定點(diǎn),若有,請求出定點(diǎn)的坐標(biāo);否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體為一簡單組合體,其底面ABCD為菱形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)若N為線段PB的中點(diǎn),求證:NE∥平面ABCD;
(2)若∠ADC=120°,且PD=BC=2,求該簡單組合體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x+1|+|x+2|+…+|x+2014|+|x-1|+|x-2|+…+|x-2014|(x∈R),四位同學(xué)研究得出如下四個命題,其中真命題的有
 

①f(x)是偶函數(shù);
②f(x)在(0,+∞)單調(diào)遞增;
③不等式f(x)<2014×2015的解集為∅;
④關(guān)于實數(shù)a的方程f(2a-3)=f(a-1)可能有無數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<x≠1,則
x(1-x)
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和Sn=5n2+3n+1,則通項an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a4+a14=1,則此數(shù)列的前17項的和=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
n
+1)n展開式中x3項的系數(shù)是
1
16
,則正整數(shù)n=
 

查看答案和解析>>

同步練習(xí)冊答案