分析 由題意和兩角和的正切公式易得tanC,可得c=1,b為最短邊,由正弦定理可得.
解答 解:由題意可得tanC=-tan(A+B)
=-$\frac{tanA+tanB}{1-tanAtanB}$=-$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}$=-1,
∴C=135°,c為最長(zhǎng)邊,故c=1,
又∵0<tanB=$\frac{1}{3}$<$\frac{1}{2}$=tanA,
∴B為最小角,b為最短邊,
∵tanB=$\frac{1}{3}$,∴sinB=$\frac{\sqrt{10}}{10}$,
由正弦定理可得b=$\frac{csinB}{sinC}$=$\frac{\sqrt{5}}{5}$,
故答案為:$\frac{\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查解三角形,涉及正弦定理和兩角和的正切公式,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若數(shù)列{an}的前n項(xiàng)和為Sn,Sn=n2+n+1,則{an}為的等差數(shù)列 | |
B. | 若數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2n-2,則{an}為等比數(shù)列 | |
C. | 非零實(shí)數(shù)a,b,c不全相等,若a,b,c成等差數(shù)列,則$\frac{1}{a}$,$\frac{1}$,$\frac{1}{c}$可能構(gòu)成等差數(shù)列 | |
D. | 非零實(shí)數(shù)a,b,c不全相等,若a,b,c成等比數(shù)列,則$\frac{1}{a}$,$\frac{1}$,$\frac{1}{c}$一定構(gòu)成等比數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | N∈M | B. | N⊆M | C. | M⊆N | D. | M∈N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(\frac{1}{2})<f(\frac{3}{2})<f(\frac{8}{3})$ | B. | $f(\frac{1}{2})<f(\frac{8}{3})<f(\frac{3}{2})$ | C. | $f(\frac{3}{2})<f(\frac{1}{2})<f(\frac{8}{3})$ | D. | $f(\frac{8}{3})<f(\frac{3}{2})<f(\frac{1}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈R,lgx0=0 | B. | ?x0∈R,tanx0=0 | C. | ?x∈R,x3>0 | D. | ?x∈R,2x>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a⊥l,b⊥l,則a∥b | B. | 若α⊥γ,β⊥γ,則α∥β | C. | 若β⊥γ,b⊥γ,則b∥β | D. | 若α⊥l,β⊥l,則α∥β |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com