已知橢圓
:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(1)求橢圓
的方程;
(2)若
(
為坐標原點),求
的值;
(3)設(shè)點
關(guān)于
軸的對稱點為
(
與
不重合),且直線
與
軸交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
試題分析:解(1)由題設(shè)知,圓
的圓心坐標是
,半徑為
,
故圓
與
軸交與兩點
,
. 1分
所以,在橢圓中
或
,又
,
所以,
或
(舍去,∵
), …于是,橢圓
的方程為
. 4分
(2)設(shè)
,
;直線
與橢圓
方程聯(lián)立
,
化簡并整理得
.
∴
,
,
∴
,
. 6分
∵
,∴
,即
得
∴
,
,即
為定值. 8分
(3)∵
,
,
∴直線
的方程為
令
,則
,
∴
解法一:
13分
當且僅當
即
時等號成立. 故
的面積存在最大值
.…
(或:
,
令
,
則
當且僅當
時等號成立,此時
故
的面積存在最大值
.…
點評:主要是考查了橢圓方程的求解,以及直線與橢圓位置關(guān)系的運用,屬于中檔題。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
+
=1(a>b>0)的焦距為4,且與橢圓x
2+
=1有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同的兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的右焦點為
,
為橢圓的上頂點,
為坐標原點,且兩焦點和短軸的兩端構(gòu)成邊長為
的正方形.
(1)求橢圓的標準方程;
(2)是否存在直線
交與橢圓于
,
,且使
,使得
為
的垂心,若存在,求出
點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
,
是長軸的左、右端點,動點
滿足
,聯(lián)結(jié)
,交橢圓于點
.
(1)當
,
時,設(shè)
,求
的值;
(2)若
為常數(shù),探究
滿足的條件?并說明理由;
(3)直接寫出
為常數(shù)的一個不同于(2)結(jié)論類型的幾何條件.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的離心率為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
的左焦點為
,過點
的直線交橢圓于
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
兩點.
(1)若點
的橫坐標為
,求直線
的斜率;
(2)記△
的面積為
,△
(
為原點)的面積為
.試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,直線
l為圓
的一條切線,且經(jīng)過橢圓
C的右焦點,直線
l的傾斜角為
,記橢圓
C的離心率為
e.
(1)求
e的值;
(2)試判定原點關(guān)于
l的對稱點是否在橢圓上,并說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的左、右焦點分別為F
1、F
2,過橢圓的右焦點F
2作一條直線l交橢圓與P、Q兩點,則△F
1PQ內(nèi)切圓面積的最大值是
查看答案和解析>>