若關(guān)于x的方程3x2-5x+a=0的一個(gè)根在(-2,0)內(nèi),另一個(gè)根在(1,3)內(nèi),則a的取值范圍是
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:數(shù)形結(jié)合
分析:原命題等價(jià)于函數(shù)f(x)=3x2-5x+a的圖象與x軸的交點(diǎn)一個(gè)(-2,0)內(nèi),另一個(gè)在(1,3)內(nèi),由數(shù)形結(jié)合可得關(guān)于a的不等式組,解之即可.
解答: 解:關(guān)于x的方程3x2-5x+a=0的一個(gè)根在(-2,0)內(nèi),另一個(gè)根在(1,3)內(nèi),
等價(jià)于函數(shù)f(x)=3x2-5x+a的圖象與x軸的交點(diǎn)一個(gè)(-2,0)內(nèi),另一個(gè)在(1,3)內(nèi),
又函數(shù)函數(shù)f(x)=3x2-5x+a的圖象是開口向上的拋物線,要滿足題意只需
f(-2)>0
f(0)<0
f(1)<0
f(3)>0
,即
22+a>0
a<0
-2+a<0
12+a>0
,解得-12<a<0,故a的取值范圍是(-12,0)
故答案為:(-12,0)
點(diǎn)評(píng):本題考查一元二次方程根的分布,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第三象限角,且
1-sinα
1+sinα
+
1
cosα
=2,則
sinα-cosα
sinα+2cosα
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,其前n項(xiàng)和為Sn,滿足
Sn+1
=
Sn
+
2

(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)數(shù)列{bn}滿足bn=
2
Sn+1-2
,數(shù)列{bn}的前n項(xiàng)和為Tn,求證Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值:
(Ⅰ)
1
2
-1
-
(
3
5
)0+(
9
4
)-0.5+
4(
2
-e)
4

(Ⅱ)lg25+lg2lg50+21+
1
2
log25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)m,n,f(m+n)=f(m)+f(n),當(dāng)x>0時(shí),有f(x)>0.
(1)求證:f(0)=0
(2)求證:f(x)在(-∞,+∞)上為增函數(shù).
(3)若f(1)=1,解不等式f(4x-2x)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+cos(2x-
3
)+2cos2x

(1)求f(x)的最大值和最小正周期;
(2)若x0∈[0,
π
2
]且f(x0)=2
,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax+by+c=0,(a,b,c≠0)與圓x2+y2=1相切,則以|a|,|b|,|c|為邊( 。
A、不能組成三角形
B、組成銳角三角形
C、組成直角三角形
D、組成鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-|4x|+3(x∈R),
(I)判斷函數(shù)的奇偶性并將函數(shù)寫成分段函數(shù)的形式;
(II)畫出函數(shù)的圖象并指出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面內(nèi)畫一條直線,將平面分成兩部分;畫兩條直線,最多將平面分成4部分;畫三條直線,最多將平面分成7部分.那么平面內(nèi)兩兩相交的n(n≥2,n∈N)條直線,最多將平面分成
 
部分.

查看答案和解析>>

同步練習(xí)冊(cè)答案