在數(shù)列{a
n}中,已知
a1=,=,bn+2=3logan(n∈N*).
(1)求數(shù)列{a
n}的通項(xiàng)公式;
(2)求證:數(shù)列{b
n}是等差數(shù)列;
(3)設(shè)數(shù)列{c
n}滿足c
n=a
n+b
n,求{c
n}的前n項(xiàng)和S
n.
(1)在數(shù)列{a
n}中,∵
a1=,=,bn+2=3logan(n∈N*),
∴數(shù)列{a
n}是首項(xiàng)為
,公比為
的等比數(shù)列,
∴a
n=(
)
n,n∈N
*.
(2)∵
bn+2=3logan,
∴
bn=3log()n-2=3n-2.
∴b
1=1,b
n+1-b
n=3,
∴數(shù)列{b
n}是首項(xiàng)為b
1=1,公差d=3的等差數(shù)列.
(3)由(1)知
an=()n,b
n=3n-2,
∴c
n=a
n+b
n=(
)
n+3n-2,
∴S
n=1+
+4+(
)
2+7+(
)
3+…+(3n-5)+(
)
n-1+(3n-2)+(
)
n=[1+4+7+…+(3n-5)+(3n-2)]+[
+(
)
2+(
)
3+…+(
)
n]
=
+
=
+-•()n.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)列{a
n}中,已知a
1=
,
=
,b
n+2=3log
a
n(n∈N
*).
(Ⅰ)求數(shù)列{a
n}的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列{b
n}是等差數(shù)列;
(Ⅲ)設(shè)
cn=,S
n是數(shù)列{c
n}的前n項(xiàng)和,求使
Sn<對(duì)所有n∈N
*都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)列{a
n}中,已知
a1=1,an+1=(n∈N+).
(1)求a
2,a
3,a
4,并由此猜想數(shù)列{a
n}的通項(xiàng)公式a
n的表達(dá)式;
(2)用適當(dāng)?shù)姆椒ㄗC明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的個(gè)位數(shù)(n∈N*),若數(shù)列{an}的前k項(xiàng)和為2011,則正整數(shù)k之值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2012•淮南二模)在數(shù)列{a
n}中,已知a
n≥1,a
1=1,且a
n+1-a
n=
,n∈N
+.
(1)記b
n=(a
n-
)
2,n∈N
+,求證:數(shù)列{b
n}是等差數(shù)列;
(2)求{a
n}的通項(xiàng)公式;
(3)對(duì)?k∈N
+,是否總?m∈N
+使得a
n=k?若存在,求出m的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)列{a
n}中,已知a
1=
,a
n=3a
n-1+3
n-1(n≥2,n∈N
*).
(Ⅰ)計(jì)算a
2,a
3;
(Ⅱ)求證:{
}是等差數(shù)列;
(Ⅲ)求數(shù)列{a
n}的通項(xiàng)公式a
n及其前n項(xiàng)和S
n.
查看答案和解析>>