18.過點(1,1)且$\frac{a}$=$\sqrt{2}$的雙曲線的標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1B.$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1
C.x2-$\frac{{y}^{2}}{\frac{1}{2}}$=1D.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1或$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1

分析 分類討論,利用雙曲線過點(1,1)且$\frac{a}$=$\sqrt{2}$,即可求出雙曲線的標(biāo)準(zhǔn)方程.

解答 解:由題意,焦點在x軸上時,$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}-\frac{1}{^{2}}=1}\\{\frac{a}=\sqrt{2}}\end{array}\right.$,∴a2=$\frac{1}{2}$,b=1,∴雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1,
同理,焦點在y軸上的雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1.
故選:D.

點評 本題考查過點(1,1)且$\frac{a}$=$\sqrt{2}$的雙曲線的標(biāo)準(zhǔn)方程,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某游藝場每天的盈利額y元與售出的門票數(shù)x張之間的關(guān)系如圖所示,試問盈利額為750元時,當(dāng)天售出的門票數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=xm+ax(m,a為常數(shù))的導(dǎo)數(shù)為f′(x)=2x+1,則數(shù)列{$\frac{f(n)}{n•{2}^{n}}$}(n∈N*)的前n項和為(  )
A.3-$\frac{n+3}{{2}^{n}}$B.3-$\frac{n+2}{{2}^{n}}$C.3+$\frac{n-1}{{2}^{n}}$D.$\frac{3}{2}$-$\frac{n+1}{{2}^{n+1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x+m在區(qū)間[0,$\frac{π}{2}$]的最大值為6.
(1)求常數(shù)m的值;
(2)求函數(shù)當(dāng)x∈R時的最小值,并求出相應(yīng)的x的取值集合;
(3)求該函數(shù)x∈[0,π]的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.用符號語言表示下列語句.
(1)點A在平面α內(nèi),但在平面β外;
(2)直線α經(jīng)過平面α外一點M;
(3)直線a在平面α內(nèi),又在平面β內(nèi),即平面α和β相交于直線a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a=2${\;}^{-\frac{1}{3}}$,b=log20.7,c=log23,則(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),橢圓E的右焦點到直線l:x-y+1=0的距離為$\sqrt{2}$.橢圓E的右頂點到右焦點與直線x=2的距離之比為$\frac{\sqrt{2}}{2}$.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l與橢圓E交于M,N兩點,l與x軸,y軸分別交于C,D兩點,記MN的中點為G,且C,D兩點到直線OG的距離相等,當(dāng)△OMN的面積最大時,求△OCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在等比數(shù)列{an}中,若an>0,則有( 。
A.a6+a7>a4+a9B.a6+a7<a4+a9C.a6+a7≥a4+a9D.a6+a7≤a4+a9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.判斷下列函數(shù)的奇偶性.
(1)y=sinx•tanx;
(2)y=$\frac{tanx}{1-tanx}$.

查看答案和解析>>

同步練習(xí)冊答案