8.某游藝場每天的盈利額y元與售出的門票數(shù)x張之間的關(guān)系如圖所示,試問盈利額為750元時,當(dāng)天售出的門票數(shù)為多少?

分析 利用所給圖象,結(jié)合直線的斜率,建立方程,即可得出結(jié)論.

解答 解:由題意,設(shè)盈利額為750元時,當(dāng)天售出的門票數(shù)為x,則$\frac{750}{x}=\frac{1500}{400}$,
∴x=200.

點(diǎn)評 本題考查利用數(shù)學(xué)知識解決實(shí)際問題,考查直線的斜率,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∉R.
(1)求函數(shù)f(x)的最小正周期,最大值,最小值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某單位有職工750人,其中青年職工420人,中年職工210人,老年職工120人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為14人,則樣本容量為( 。
A.7B.15C.25D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,定義域與值域相同的是( 。
A.y=$\frac{2}{x}$B.y=x2C.y=log2xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓的中心在原點(diǎn),離心率為$\frac{1}{2}$,一個焦點(diǎn)是F(-1,0).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)Q是橢圓上的一點(diǎn),過點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,且$\overrightarrow{MQ}$=2$\overrightarrow{QF}$,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x2+2x<0},B={x|($\frac{1}{2}$)x-2≥0},則A∩∁RB=( 。
A.(-2,-1)B.(-1,0)C.(-2,-1]D.[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知冪函數(shù)y=f(x)的圖象過點(diǎn)$(2,2\sqrt{2})$,則f(9)=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知0<m<n<1,則指數(shù)函數(shù)①y=mx,②y=nx的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過點(diǎn)(1,1)且$\frac{a}$=$\sqrt{2}$的雙曲線的標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1B.$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1
C.x2-$\frac{{y}^{2}}{\frac{1}{2}}$=1D.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1或$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1

查看答案和解析>>

同步練習(xí)冊答案