設(shè)函數(shù)f(x)=2x+a,g(x)=
1
4
(x2+3),若g(f(x))=x2+x+1,求f(x)的解析式.
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得g(f(x))的解析式,和已知作比較可得a的不等式組,解之可得a值,可得f(x)解析式.
解答: 解:∵f(x)=2x+a,g(x)=
1
4
(x2+3),
∴g(f(x))=
1
4
(2x+a)2+
3
4
=x2+ax+
1
4
a2
+
3
4
,
又∵g(f(x))=x2+x+1,
∴x2+x+1=x2+ax+
1
4
a2
+
3
4

1=a
1=
1
4
a2+
3
4
,解得a=1,
∴f(x)的解析式為:f(x)=2x+1
點評:本題考查函數(shù)解析式的求解,待定系數(shù)是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列語句中是簡單命題是( 。
A、
3
不是有理數(shù)
B、△ABC是等腰直角三角形
C、負數(shù)的平方是正數(shù)
D、3x+2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中
①y=1是冪函數(shù);
②“x<1”是“x<2”的充分不必要條件;
③命題“存在x∈R,x2-2>0”的否定是:“任意x∈R,x2-x<0”
④若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點.
其中錯誤的個數(shù)有( 。﹤.
A、4B、2C、3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||2x+1|>3},集合B={x|y=
x+1
x-2
}
,則A∩(∁RB)=( 。
A、(1,2)
B、(1,2]
C、(1,+∞)
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AA1=2,E是BB1的中點,且CE交BC1于點P,點Q在線段BC上,CQ=2QB.
(1)證明:CC1∥平面A1PQ;
(2)若直線BC⊥平面A1PQ,求直線A1Q與平面BCC1B1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商家推出一款簡單電子游戲,彈射一次可以將三個相同的小球隨機彈到一個正六邊形的頂點與中心共七個點中的三個位置上(如圖),用S表示這三個球為頂點的三角形的面積.規(guī)定:當(dāng)三球共線時,S=0;當(dāng)S最大時,中一等獎,當(dāng)S最小時,中二等獎,其余情況不中獎,一次游戲只能彈射一次.
(Ⅰ)求甲一次游戲中能中獎的概率;
(Ⅱ)設(shè)這個正六邊形的面積是6,求一次游戲中隨機變量S的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足(b-a)(sinB+sinA)=(b-c)sinC,cosC=
3
3
,a=3.
(Ⅰ)求sinB;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

靖國神社是日本軍國主義的象征.中國人民珍愛和平,所以要堅決反對日本軍國主義.2013年12月26日日本首相安倍晉三悍然參拜靖國神社,此舉在世界各國激起輿論的批評.某報的環(huán)球輿情調(diào)查中心對中國大陸七個代表性城市的550個普通民眾展開民意調(diào)查.某城市調(diào)查體統(tǒng)計結(jié)果如下表:
                    性別
中國政府是否
需要在釣魚島和其他爭議
問題上持續(xù)對日強硬
需要 50 250
不需要 100 150
(Ⅰ)試估計這七個代表性城市的普通民眾中,認為“中國政府需要在釣魚島和其他爭議問題上持續(xù)對日強硬”的民眾所占比例;
(Ⅱ)能否有99.9%以上的把握認為這七個代表性城市的普通民眾的民意與性別有關(guān)?
(Ⅲ)從被調(diào)查認為“中國政府需要在釣魚島和其他爭議問題上持續(xù)對日強硬”的民眾中,采用分層抽樣的方式抽取6人做進一步的問卷調(diào)查,然后在這6人中用簡單隨機抽樣方法抽取2人進行電視專訪,記被抽到的2人中女性的人數(shù)為X,求X的分布列.
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的準(zhǔn)線與雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線分別交于A,B兩點,且|AB|=2
3
,則雙曲線的離心率e為
 

查看答案和解析>>

同步練習(xí)冊答案