【題目】某商店經(jīng)營的某種消費品的進價為每件14元,月銷售量(百件)與每件的銷售價格(元)的關(guān)系如圖所示,每月各種開支2 000元.
(1)寫出月銷售量(百件)關(guān)于每件的銷售價格(元)的函數(shù)關(guān)系式.
(2)寫出月利潤(元)與每件的銷售價格(元)的函數(shù)關(guān)系式.
(3)當(dāng)該消費品每件的銷售價格為多少元時,月利潤最大?并求出最大月利潤.
【答案】(1) ;(2) ;(3) 當(dāng)該消費品每件的銷售價格為學(xué)時,月利潤最大,為4050元
【解析】
(1)根據(jù)函數(shù)的圖象為分段函數(shù),分別求得當(dāng)和時,求得函數(shù)的解析式,即可得到答案;
(2)由(1)中的函數(shù),結(jié)合題意,即可求得月利潤(元)與每件的銷售價格(元)的函數(shù)關(guān)系式.
(3)由(2)中的解析式,結(jié)合二次函數(shù)的性質(zhì),分別求得當(dāng)和的最大值,即可求解.
(1)由題意,當(dāng)時,設(shè)函數(shù),
由,解得,所以,
同理可得當(dāng)時,,
所以.
(2)當(dāng)時,,
即;
當(dāng)時,,
即,
所以.
(3)由(2)中的解析式和二次函數(shù)的知識,可得
當(dāng)時,則時,取到最大值,為4050;
當(dāng)時,則時,取到最大值,為.
又由,所以當(dāng)該消費品每件的銷售價格為學(xué)時,月利潤最大,為4050元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元,滿足(為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);
(2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,
①若曲線與直線相切,求c的值;
②若曲線與直線有公共點,求c的取值范圍.
(2)當(dāng)時,不等式對于任意正實數(shù)x恒成立,當(dāng)c取得最大值時,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).
(1)已知,,利用上述性質(zhì),求的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)和函數(shù),若對任意的,總存在使得成立,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月,來自“一帶一路”沿線的國青年評選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購.為發(fā)展業(yè)務(wù),某調(diào)研組對兩個公司的掃碼支付準(zhǔn)備從國內(nèi) 個人口超過萬的超大城市和個人口低于萬的小城市隨機抽取若干個進行統(tǒng)計,若一次抽取個城市,全是小城市的概率為.
(I)求的值;
(Ⅱ)若一次抽取個城市,則:
①假設(shè)取出小城市的個數(shù)為,求的分布列和期望;
②取出個城市是同一類城市求全為超大城市的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】峰谷電是目前在城市居民當(dāng)中開展的一種電價類別.它是將一天24小時劃分成兩個時間段,把8:00—22:00共14小時稱為峰段,執(zhí)行峰電價,即電價上調(diào);22:00—次日8:00共10個小時稱為谷段,執(zhí)行谷電價,即電價下調(diào).為了進一步了解民眾對峰谷電價的使用情況,從某市一小區(qū)隨機抽取了50 戶住戶進行夏季用電情況調(diào)查,各戶月平均用電量以,,,,,(單位:度)分組的頻率分布直方圖如下圖:
若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價的戶數(shù)如下表:
月平均用電量(度) | ||||||
使用峰谷電價的戶數(shù) | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估計所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:
一般用戶 | 大用戶 | |
使用峰谷電價的用戶 | ||
不使用峰谷電價的用戶 |
()根據(jù)()中的列聯(lián)表,能否有的把握認(rèn)為 “用電量的高低”與“使用峰谷電價”有關(guān)?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 經(jīng)過點,焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓交于不同的兩點、,線段的垂直平分線交軸交于點,若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com