【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心為O,點(diǎn)E是側(cè)棱BB1上的一個(gè)動(dòng)點(diǎn).有下列判斷: ①直線AC與直線C1E是異面直線;②A1E一定不垂直于AC1;③三棱錐E﹣AA1O的體積為定值;④AE+EC1的最小值為2
其中正確的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

【答案】C
【解析】解:如圖,

對(duì)于①,∵直線AC經(jīng)過平面BCC1B1內(nèi)的點(diǎn)C,而直線C1E在平面BCC1B1內(nèi)不過C,∴直線AC與直線C1E是異面直線,故①正確;

對(duì)于②,當(dāng)E與B重合時(shí),AB1⊥A1B,而C1B1⊥A1B,∴A1B⊥平面AB1C1,則A1E垂直AC1,故②錯(cuò)誤;

對(duì)于③,由題意知,直三棱柱ABC﹣A1B1C1的外接球的球心為O是AC1 與A1C 的交點(diǎn),則△AA1O的面積為定值,由BB1∥平面AA1C1C,∴E到平面AA1O的距離為定值,∴三棱錐E﹣AA1O的體積為定值,故③正確;

對(duì)于④,設(shè)BE=x,則B1E=2﹣x,∴AE+EC1= .由其幾何意義,即平面內(nèi)動(dòng)點(diǎn)(x,1)與兩定點(diǎn)(0,0),(2,0)距離和的最小值知,其最小值為2 ,故④正確.

∴正確命題的個(gè)數(shù)是3個(gè).

故選:C.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用棱柱的結(jié)構(gòu)特征的相關(guān)知識(shí)可以得到問題的答案,需要掌握兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓P過A(﹣8,0),B(2,0),C(0,4)三點(diǎn),圓Q:x2+y2﹣2ay+a2﹣4=0.
(1)求圓P的方程;
(2)如果圓P和圓Q相外切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年蔬菜銷售收入50萬元.設(shè)f(n)表示前n年的純利潤(rùn)總和(f(n)=前n年的總收入﹣前n年的總支出﹣投資額).
(1)該廠從第幾年開始盈利?
(2)若干年后,投資商為開發(fā)新項(xiàng)目,對(duì)該廠有兩種處理方法:①年平均純利潤(rùn)達(dá)到最大時(shí),以48萬元出售該廠;②純利潤(rùn)總和達(dá)到最大時(shí),以16萬元出售該廠,問哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項(xiàng)為1的數(shù)列{an}的前n項(xiàng)和為Sn , 若點(diǎn)(Sn﹣1 , an)(n≥2)在函數(shù)y=3x+4的圖象上. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=log2 ,且bn=2n+1cn , 其中n∈N* , 求數(shù)列{cn}的前前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公差大于0的等差數(shù)列{an}中,2a7﹣a13=1,且a1 , a3﹣1,a6+5成等比數(shù)列,則數(shù)列{(﹣1)n﹣1an}的前21項(xiàng)和為(
A.21
B.﹣21
C.441
D.﹣441

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的兩條對(duì)角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x﹣3y﹣6=0,點(diǎn)T(﹣1,1)在AD邊所在直線上. (Ⅰ)求AD邊所在直線的方程;
(Ⅱ)求矩形ABCD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計(jì)劃種植果樹,但需要有輔助光照.半圓周上的C處恰有一可旋轉(zhuǎn)光源滿足果樹生長(zhǎng)的需要,該光源照射范圍是 ,點(diǎn)E,F(xiàn)在直徑AB上,且
(1)若 ,求AE的長(zhǎng);
(2)設(shè)∠ACE=α,求該空地種植果樹的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin(2x+ )的圖象向右平移 個(gè)最小正周期后,所得圖象對(duì)應(yīng)的函數(shù)為(
A.y=sin(2x﹣
B.y=sin(2x﹣
C.y=sin(2x﹣
D.y=sin(2x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,A,B的坐標(biāo)分別為(-1,2),(4,3),AC的中點(diǎn)M在y軸上,BC的中點(diǎn)N在x軸上.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線MN的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案