精英家教網 > 高中數學 > 題目詳情
12.為了得到函數y=2×2x的圖象,可以把函數y=2x的圖象( 。
A.向左平移1個單位長度B.向右平移1個單位長度
C.向左平移2個單位長度D.向右平移2個單位長度

分析 先根據指數的運算性質,化簡函數的解析式,進而根據函數圖象的平移變換法則是,得到答案.

解答 解:函數y=2×2x=2x+1,
要得到其圖象,可將函數y=2x的圖象向左平移1個單位長度,
故選:A

點評 本題考查的知識點是函數的圖象,熟練掌握函數圖象的平移變換法則,是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

2.若θ∈[${\frac{π}{4}$,$\frac{π}{2}}$],sin2θ=$\frac{{3\sqrt{7}}}{8}$,則sinθ=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{\sqrt{7}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數$f(x)=\frac{a+blnx}{x+1}$在點(1,f(1))處的切線方程為x+y=2.
(Ⅰ)求a,b的值;
(Ⅱ)若對函數f(x)定義域內的任一個實數x,都有xf(x)<m恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知cos(π-α)=-$\frac{5}{13}$且α是第一象限角,則sinα=(  )
A.$-\frac{5}{13}$B.$\frac{12}{13}$C.$-\frac{12}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足$A=\frac{2π}{3}$,a2=2bc+3c2,則$\frac{c}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知$f(x)={log_{\frac{1}{2}}}({1+x})-{log_{\frac{1}{2}}}({1-x})$
(1)求f(x)的定義域;
(2)求使f(x)>0成立的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.若函數y=ax+b的部分圖象如圖所示,則( 。
A.0<a<1,-1<b<0B.0<a<1,0<b<1C.1<a,-1<b<0D.1<a,0<b<1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為10,一條漸近線為y=$\frac{1}{2}$x,則該雙曲線的方程為( 。
A.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}$=1C.$\frac{{x}^{2}}{80}-\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{80}$=1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.若直線l1:(m-2)x-y-1=0,與直線l2:3x-my=0互相平行,則m的值等于(  )
A.0或-1或3B.0或3C.0或-1D.-1或3

查看答案和解析>>

同步練習冊答案