12.求函數(shù)y=1+2sin($\frac{π}{6}$-x)的單調(diào)遞增區(qū)間.

分析 先將x的系數(shù)根據(jù)誘導(dǎo)公式化為正數(shù),再由正弦函數(shù)的單調(diào)性進(jìn)行求單調(diào)增減區(qū)間.

解答 解:∵y=1+2sin($\frac{π}{6}$-x)=1-2sin(x-$\frac{π}{6}$),
故有2kπ+$\frac{π}{2}$≤x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z.
⇒2kπ+$\frac{2π}{3}$≤x≤2kπ+$\frac{5π}{3}$(k∈Z)為單調(diào)遞增區(qū)間.
故函數(shù)y=1+2sin($\frac{π}{6}$-x)的單調(diào)遞增區(qū)間為:[2kπ+$\frac{2π}{3}$,2kπ+$\frac{5π}{3}$].k∈Z.

點評 本題主要考查誘導(dǎo)公式的應(yīng)用和正弦函數(shù)單調(diào)性的應(yīng)用.對于三角函數(shù)的基本性質(zhì)一定要熟練掌握,這是解題的關(guān)鍵.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知定義在R上奇函數(shù)f(x)滿足f(x+2)=-f(x),且x∈(0,1]時,f(x)=2x,求值:
(1)f(98)=0;
(2)f($\frac{17}{2}$)=$\sqrt{2}$;
(3)f($\frac{100}{3}$)=$\root{3}{4}$;
(4)f(log218)=$\frac{9}{4}$;
(5)f(2015)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點A,B分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點與上頂點.若直線AB被圓x2+y2=a2截得的弦長為2b,記橢圓的離心率為e,則e2=$\frac{3-\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如果函數(shù)f(x)與g(x)的定義域相同,且f(x)是奇函數(shù),g(x)是偶函數(shù),請證明F(x)=f(x)g(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡:$\frac{tan(π+α)cos(π+α)si{n}^{2}(3π+α)}{ta{n}^{2}α•co{s}^{3}(-π-α)}$=-sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ln(ax)(a≠0,a∈R),g(x)=$\frac{x-1}{x}$.
(Ⅰ)當(dāng)a=1時,記φ(x)=f(x)-$\frac{x+1}{x-1}$,求函數(shù)φ(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)(x≥1)恒成立,求實數(shù)a的取值范圍;
(Ⅲ) 已知對于0<λ<1,恒有$\frac{{1+{k^λ}}}{2}≤{(\frac{1+k}{2})^λ}$(k∈N*)成立;當(dāng)a=1且0<λ<1時,對任意n∈N*,試比較$\sum_{k=1}^n{\frac{1}{{1+{k^λ}}}}$與f[(1+n)λ2n(1-λ)]的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C的焦點是F1(0,4),F(xiàn)2(0,-4),離心率是$\frac{2}{3}$
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上一點,若△PF1F2是直角三角形,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.化根式$a\sqrt{a}$為分?jǐn)?shù)指數(shù)冪的結(jié)果為( 。
A.${a^{\frac{3}{2}}}$B.${a^{\frac{2}{3}}}$C.${a^{\frac{3}{4}}}$D.${a^{\frac{4}{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某人2000年1月1日到銀行存入一年期定期存款a元,若年利率為r,按復(fù)利計算,到期自動轉(zhuǎn)存,那么到2015年1月1日可取回款( 。
A.a(1+r)15B.a(1+r)14C.ar15D.a+a(1+r)15

查看答案和解析>>

同步練習(xí)冊答案