3.已知點A,B分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點與上頂點.若直線AB被圓x2+y2=a2截得的弦長為2b,記橢圓的離心率為e,則e2=$\frac{3-\sqrt{5}}{2}$.

分析 由題意可得A(-a,0),B(0,b),直線AB的方程為bx-ay=ab,求得圓心到直線的距離,運用弦長公式,可得a,b的方程,再由a,b,c和離心率公式,解方程即可得到所求值.

解答 解:由題意可得A(-a,0),B(0,b),
直線AB的方程為bx-ay=ab,
圓x2+y2=a2的圓心到直線的距離為d=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$,
由弦長公式可得2$\sqrt{{a}^{2}-\frac{{a}^{2}^{2}}{{a}^{2}+^{2}}}$=2b,
化簡可得a4-a2b2-b4=0,
由b2=a2-c2,可得a4-3a2c2+c4=0,
結(jié)合e=$\frac{c}{a}$,可得e4-3e2+1=0,
解得e2=$\frac{3-\sqrt{5}}{2}$($\frac{3+\sqrt{5}}{2}$舍去).
故答案為:$\frac{3-\sqrt{5}}{2}$.

點評 本題考查橢圓的方程和性質(zhì),主要考查離心率的求法,考查直線和圓相交的弦長公式的運用,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2cos($\frac{π}{3}$-2x)
(1)若f(x)=1,x∈[-$\frac{π}{6}$,$\frac{π}{4}$],求x的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.要得到函數(shù)y=cosx的圖象,只需將函數(shù)y=sin(x-$\frac{π}{3}$)的圖象(  )
A.向左平移$\frac{π}{6}$B.向右平移$\frac{π}{3}$C.向左平移$\frac{5π}{6}$D.向右平移$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知x、y滿足不等式組$\left\{\begin{array}{l}{y-x≤0}\\{x+y≥0}\\{x≤1}\end{array}\right.$,求x+2y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知復(fù)數(shù)z滿足|z+4|=|z+4i|.
(1)若復(fù)數(shù)z對應(yīng)復(fù)平面上的點P(x,y),求P的軌跡方程;
(2)又若z+$\frac{14-z}{z-1}$∈R,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求函數(shù)y=x2-2x+5,x∈[0,5]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若sinα+2cosα=$\sqrt{5}$,則sinα的值為(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求函數(shù)y=1+2sin($\frac{π}{6}$-x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$\overrightarrow{a}$,$\overrightarrow$的夾角是120°,且$\overrightarrow{a}$=(-2,-4),|$\overrightarrow$|=$\sqrt{5}$,則$\overrightarrow{a}$在$\overrightarrow$上的投影等于( 。
A.-$\frac{{\sqrt{5}}}{2}$B.$-\sqrt{5}$C.2$\sqrt{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案