【題目】(1)有物理、化學(xué)、生物三個(gè)學(xué)科競(jìng)賽各設(shè)冠軍一名,現(xiàn)有人參賽可報(bào)任意學(xué)科并且所報(bào)學(xué)科數(shù)不限,則最終決出冠軍的結(jié)果共有多少種可能?
(2)有共個(gè)數(shù),從中取個(gè)數(shù)排成一個(gè)五位數(shù),要求奇數(shù)位上只能是奇數(shù),則共可排成多少個(gè)五位數(shù)?
(3)有共個(gè)數(shù),從中取個(gè)數(shù)排成一個(gè)五位數(shù),要求奇數(shù)只在奇數(shù)位上,則共可排成多少個(gè)五位數(shù)?
【答案】(1)125; (2)1800; (3)2520
【解析】
(1)分析每個(gè)學(xué)科的冠軍情況即可求解(2)先排奇數(shù)位,再排偶數(shù)位即可;(3)按用1個(gè),2個(gè),3個(gè)奇數(shù)分情況即可求解
(1)每個(gè)學(xué)科的冠軍有5種可能,故最終決出冠軍的結(jié)果共有5×5×5=125種
(2)由題,有5個(gè)奇數(shù)數(shù)字,4個(gè)偶數(shù)數(shù)字
先排奇數(shù)位有種,再排偶數(shù)位有種,由分步計(jì)數(shù)原理共可排60×30=1800個(gè)
(3)若用1個(gè)奇數(shù)數(shù)字,有
若用2個(gè)奇數(shù)數(shù)字,有=1440
若用3個(gè)奇數(shù)數(shù)字,有=720
綜上,共可排成360+1440+720=2520個(gè)五位數(shù)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,直線交橢圓于、兩點(diǎn),橢圓的右頂點(diǎn)為,且滿足.
(1)求橢圓的方程;
(2)若直線與橢圓交于不同兩點(diǎn)、,且定點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的部分圖象大致是( )
A. B.
C. D.
【答案】D
【解析】當(dāng)時(shí), ,所以去掉A,B;
因?yàn)?/span>,所以,因此去掉C,選D.
點(diǎn)睛:有關(guān)函數(shù)圖象識(shí)別問(wèn)題的常見題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);③由函數(shù)的奇偶性,判斷圖象的對(duì)稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).(2)由實(shí)際情景探究函數(shù)圖象.關(guān)鍵是將問(wèn)題轉(zhuǎn)化為熟悉的數(shù)學(xué)問(wèn)題求解,要注意實(shí)際問(wèn)題中的定義域問(wèn)題.
【題型】單選題
【結(jié)束】
8
【題目】《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長(zhǎng)的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2)先根據(jù)正弦定理求邊,用角表示周長(zhǎng),根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.
試題解析:(1)由正弦定理得,
∴,∴,即
因?yàn)?/span>,則.
(2)由正弦定理
∴, , ,
∴周長(zhǎng)
∵,∴
∴當(dāng)即時(shí)
∴當(dāng)時(shí), 周長(zhǎng)的最大值為.
【題型】解答題
【結(jié)束】
18
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在處的切線經(jīng)過(guò)點(diǎn).
(1)證明: ;
(2)若當(dāng)時(shí), ,求的取值范圍.
【答案】(1)證明見解析;(2) .
【解析】試題分析:(1)先根據(jù)導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)切線過(guò)點(diǎn),解得導(dǎo)數(shù)可得導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變號(hào)規(guī)律可得函數(shù)單調(diào)性,根據(jù)函數(shù)單調(diào)性可得函數(shù)最小值為0,即得結(jié)論,(2)先化簡(jiǎn)不等式為,分離得,再利用導(dǎo)數(shù)求函數(shù)單調(diào)性,利用羅伯特法則求最大值,即得的取值范圍.
試題解析:(1)曲線在處的切線為,即
由題意得,解得
所以
從而
因?yàn)楫?dāng)時(shí), ,當(dāng)時(shí), .
所以在區(qū)間上是減函數(shù),區(qū)間上是增函數(shù),
從而.
(2)由題意知,當(dāng)時(shí), ,所以
從而當(dāng)時(shí), ,
由題意知,即,其中
設(shè),其中
設(shè),即,其中
則,其中
(1)當(dāng)時(shí),因?yàn)?/span>時(shí), ,所以是增函數(shù)
從而當(dāng)時(shí), ,
所以是增函數(shù),從而.
故當(dāng)時(shí)符合題意.
(2)當(dāng)時(shí),因?yàn)?/span>時(shí), ,
所以在區(qū)間上是減函數(shù)
從而當(dāng)時(shí),
所以在上是減函數(shù),從而
故當(dāng)時(shí)不符合題意.
(3)當(dāng)時(shí),因?yàn)?/span>時(shí), ,所以是減函數(shù)
從而當(dāng)時(shí),
所以是減函數(shù),從而
故當(dāng)時(shí)不符合題意
綜上的取值范圍是.
【題型】解答題
【結(jié)束】
22
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線: .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)射線()與曲線的異于極點(diǎn)的交點(diǎn)為,與曲線的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,長(zhǎng)軸長(zhǎng)為.
(1)求橢圓的方程;
(2)點(diǎn)是以長(zhǎng)軸為直徑的圓上一點(diǎn),圓在點(diǎn)處的切線交直線于點(diǎn),求證:過(guò)點(diǎn)且垂直于直線的直線過(guò)橢圓的右焦點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是( 。
A. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱
B. 函數(shù)的圖象關(guān)于直線對(duì)稱
C. 函數(shù)的最小正周期為
D. 當(dāng)時(shí),函數(shù)的圖象與直線圍成的封閉圖形面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)是所在平面內(nèi)一點(diǎn),下列說(shuō)法正確的是( )
A.若,則的形狀為等邊三角形
B.若,則點(diǎn)是邊的中點(diǎn)
C.過(guò)任作一條直線,再分別過(guò)頂點(diǎn)作的垂線,垂足分別為,若恒成立,則點(diǎn)是的垂心
D.若則點(diǎn)在邊的延長(zhǎng)線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)數(shù)函數(shù)g(x)=1ogax(a>0,a≠1)和指數(shù)函數(shù)f(x)=ax(a>0,a≠1)互為反函數(shù).已知函數(shù)f(x)=3x,其反函數(shù)為y=g(x).
(Ⅰ)若函數(shù)g(kx2+2x+1)的定義域?yàn)?/span>R,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定義在I上的函數(shù)F(x),如果滿足:對(duì)任意x∈I,總存在常數(shù)M>0,都有-M≤F(x)≤M成立,則稱函數(shù)F(x)是I上的有界函數(shù),其中M為函數(shù)F(x)的上界.若函數(shù)h(x)=,當(dāng)m≠0時(shí),探求函數(shù)h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com