7.在等差數(shù)列{an}中,若a21+a1000+a2000=30,a1、a2013為方程x2-ax+20=0的兩根,則a=( 。
A.5B.10C.15D.20

分析 利用等差數(shù)列{an}中,a21+a1000+a2000=30,可得a1+1006d=10,再利用韋達(dá)定理即可得出結(jié)論.

解答 解:∵等差數(shù)列{an}中,a21+a1000+a2000=30,
∴3a1+3018d=30,
∴a1+1006d=10,
∴a1+a2013=2(a1+1006d)=20,
∵a1、a2013為方程x2-ax+20=0的兩根,
∴a1+a2013=a,
∴a=20,
故選:D.

點(diǎn)評(píng) 本題考查根與系數(shù)的關(guān)系,考查等差數(shù)列,確定方程的根是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直線3x-4y+5=0與圓x2+y2=r2(r>0)相交于A,B兩點(diǎn),且∠AOB=120°,(O為坐標(biāo)原點(diǎn)),則r=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知隨機(jī)變量X服從二項(xiàng)分布B(n,p),若E(X)=30,D(X)=20,則P=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x,y∈(0,+∞),3x-2=($\frac{1}{3}$)y,則$\frac{1}{x}$+$\frac{2}{y}$的最小值為$\frac{3}{2}+\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3-x2+a是[0,a]上“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{3}$,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{3}$,1)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)(1+x)3+(1+x)4+…+(1+x)50=a0+a1x+a2x2+…+a50x50,則a3等于( 。
A.C${\;}_{51}^{3}$B.C${\;}_{51}^{4}$C.2C${\;}_{50}^{3}$D.C${\;}_{50}^{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實(shí)數(shù)a,b,c滿足$\frac{1}{4}$a2+$\frac{1}{4}$b2+c2=1,則ab+2bc+2ca的取值范圍是( 。
A.(-∞,4]B.[-4,4]C.[-2,4]D.[-1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.△ABC滿足A=2B,C為鈍角,三邊長為整數(shù),求△ABC周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,四邊形ABCD和ADPQ均為正方形,他們所在的平面互相垂直,動(dòng)點(diǎn)M在線段PQ上,E、F分別為AB、BC的中點(diǎn),設(shè)異面直線EM與AF所成的角為θ,則cosθ的最大值為$\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案