在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足(2a-c)cosB=bcosC.則角B為( 。
A、30°B、60°
C、120°D、150°
考點:余弦定理
專題:解三角形
分析:已知等式利用正弦定理化簡,整理后利用兩角和與差的正弦函數(shù)公式及誘導公式變形,根據(jù)sinA不為0求出cosB的值,即可確定出B的度數(shù).
解答: 解:已知等式(2a-c)cosB=bcosC,利用正弦定理化簡得:(2sinA-sinC)cosB=sinBcosC,
整理得:2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA,
∵sinA≠0,
∴cosB=
1
2

則B=60°.
故選:B.
點評:此題考查了正弦定理,以及兩角和與差的正弦函數(shù)公式,熟練掌握正弦定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a2=1,a5=4,則該等差數(shù)列{an}的公差為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a=log
1
2
3,b=1.3
2
3
,c=(
2
3
)
1.3
,則a,b,c用“>“號連接的正確表達式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC周長為1,連結(jié)△ABC三邊的中點構(gòu)成第二個三角形,再連結(jié)第二個三角形三邊的中點構(gòu)成第三個三角形,依此類推,設(shè)第n個三角形周長為l(n),則歸納l(n)關(guān)于n的表達式為l(n)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在數(shù)列{an}中,a3=2,a7=1,且數(shù)列{
1
an+1
}是等差數(shù)列,則a8=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)復數(shù)z=
2
1+i
(i為虛數(shù)單位),則z的虛部為( 。
A、-iB、iC、-1D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
4x+2
,若函數(shù)y=f(x+m)-
1
4
為奇函數(shù),則實數(shù)m為( 。
A、-
1
2
B、0
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=ln(2x2+1)的導數(shù)是( 。
A、
1
2x2+1
B、
4x
2x2+1
C、
4x
(2x2+1)ln10
D、
4x
(2x2+1)log2e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x與y之間的一組數(shù)據(jù):
x1234
y2358
則y與x的線性回歸方程為
y
=bx+a必過點( 。
A、(4.5,2.5)
B、(1.5,4.5)
C、(2.5,4.5)
D、(1.5,4)

查看答案和解析>>

同步練習冊答案