【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
【答案】(1) f(x)=x+;(2)證明見(jiàn)解析
【解析】
(1)解 f′(x)=a-,
解得或
因?yàn)?/span>a,b∈Z,故f(x)=x+.
(2)在曲線上任取一點(diǎn),由f′(x0)=1-知,過(guò)此點(diǎn)的切線
方程為y-=[1-] (x-x0).
令x=1,得y=, 切線與直線x=1的交點(diǎn)為 (1,);
令y=x,得y=2x0-1,切線與直線y=x的交點(diǎn)為(2x0-1,2x0-1);
直線x=1與直線y=x的交點(diǎn)為(1,1),從而所圍三角形的面積為
|2x0-1-1|=2.
所以,所圍三角形的面積為定值2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年5月,來(lái)自“一帶一路”沿線的20國(guó)青年評(píng)選出了中國(guó)的“新四大發(fā)明”:高鐵、掃碼支付、共享單車(chē)和網(wǎng)購(gòu).乘坐高鐵可以網(wǎng)絡(luò)購(gòu)票,為了研究網(wǎng)絡(luò)購(gòu)票人群的年齡分布情況,在5月31日重慶到成都高鐵9600名網(wǎng)絡(luò)購(gòu)票的乘客中隨機(jī)抽取了120人進(jìn)行了統(tǒng)計(jì)并記錄,按年齡段將數(shù)據(jù)分成6組:,得到如圖所示的直方圖:
(1)若從總體的9600名網(wǎng)絡(luò)購(gòu)票乘客中隨機(jī)抽取一人,估計(jì)其年齡大于35歲的概率;
(2)試估計(jì)總體中年齡在區(qū)間內(nèi)的人數(shù);
(3)試通過(guò)直方圖,估計(jì)5月31日當(dāng)天網(wǎng)絡(luò)購(gòu)票的9600名乘客年齡的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于, 兩點(diǎn),與軸交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程在上恰有3個(gè)解,存在,使不等式成立.
(1)若為真命題,求正數(shù)的取值范圍;
(2)若為真命題,且為假命題,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面,、均為等邊三角形,為的中點(diǎn),點(diǎn)在上.
(1)求證:平面平面;
(2)若點(diǎn)是線段的中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】黃金分割比例具有嚴(yán)格的比例性,藝術(shù)性,和諧性,蘊(yùn)含著豐富的美學(xué)價(jià)值.這一比值能夠引起人們的美感,被稱(chēng)為是建筑和藝術(shù)中最理想的比例.我們把離心率的橢圓稱(chēng)為“黃金橢圓”,則以下四種說(shuō)法中正確的個(gè)數(shù)為( )
①橢圓是“黃金橢圓;
②若橢圓,的右焦點(diǎn)且滿(mǎn)足,則該橢圓為“黃金橢圓”;
③設(shè)橢圓,的左焦點(diǎn)為F,上頂點(diǎn)為B,右頂點(diǎn)為A,若,則該橢圓為“黃金橢圓”;
④設(shè)橢圓,,的左右頂點(diǎn)分別A,B,左右焦點(diǎn)分別是,,若,,成等比數(shù)列,則該橢圓為“黃金橢圓”;
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與拋物線有一個(gè)相同的焦點(diǎn),且該橢圓的離心率為,
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程:
(Ⅱ)求過(guò)點(diǎn)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選)已知函數(shù),其中正確結(jié)論的是( )
A.當(dāng)時(shí),函數(shù)有最大值.
B.對(duì)于任意的,函數(shù)一定存在最小值.
C.對(duì)于任意的,函數(shù)是上的增函數(shù).
D.對(duì)于任意的,都有函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是梯形,,,是正三角形,為的中點(diǎn),平面平面.
(1)求證:平面;
(2)在棱上是否存在點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com