【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,點(diǎn)D是AB的中點(diǎn).
(1)求證:CD⊥平面A1ABB1;
(2)求證:AC1∥平面CDB1.
【答案】(1) 見(jiàn)解析(2)見(jiàn)解析
【解析】
(1)欲證CD⊥平面A1ABB1,可先證平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,滿足根據(jù)面面垂直的性質(zhì);
(2)欲證AC1∥平面CDB1,根據(jù)直線與平面平行的判定定理可知只需證AC1與平面CDB1內(nèi)一直線平行,連接BC1,設(shè)BC1與B1C的交點(diǎn)為E,連接DE.根據(jù)中位線可知DE∥AC1,DE平面CDB1,AC1平面CDB1,滿足定理所需條件.
(1)證明:∵ABC-A1B1C1是直三棱柱,
∴平面ABC⊥平面A1ABB1.
∵AC=BC,點(diǎn)D是AB的中點(diǎn),
∴CD⊥AB,面ABC∩面A1ABB1=AB
∴CD⊥平面A1ABB1.
(2)證明:連接BC1,設(shè)BC1與B1C的交點(diǎn)為E,連接DE.
∵D是AB的中點(diǎn),E是BC1的中點(diǎn),
∴DE∥AC1.∵DE平面CDB1,AC1平面CDB1,
∴AC1∥平面CDB1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形, , , , , 平面, .
(1)求證: 平面;
(2)求證: 平面;
(3)若是的中點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2(lnx+lna)(a>0).
(1)當(dāng)a=1時(shí),設(shè)函數(shù)g(x)= ,求函數(shù)g(x)的單調(diào)區(qū)間與極值;
(2)設(shè)f′(x)是f(x)的導(dǎo)函數(shù),若 ≤1對(duì)任意的x>0恒成立,求實(shí)數(shù)a的取值范圍;
(3)若x1 , x2∈( ,1),x1+x2<1,求證:x1x2<(x1+x2)4 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)有以下統(tǒng)計(jì)資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y | 2 | 4 | 5 | 6 | 7 |
若由資料知y對(duì)x呈線性相關(guān)關(guān)系。試求:
(1)求; (2)線性回歸方程;
(3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?
附:利用“最小二乘法”計(jì)算a,b的值時(shí),可根據(jù)以下公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購(gòu)狂歡節(jié),某電子商務(wù)平臺(tái)對(duì)某市的網(wǎng)民在今年“雙十一”的網(wǎng)購(gòu)情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額(百元)的頻率分布直方圖如圖所示:
(1)求網(wǎng)民消費(fèi)金額的平均值和中位數(shù);
(2)把下表中空格里的數(shù)填上,能否有90%的把握認(rèn)為網(wǎng)購(gòu)消費(fèi)與性別有關(guān);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg的圖象關(guān)于原點(diǎn)對(duì)稱,其中a為常數(shù).
(Ⅰ)求a的值,并求出f(x)的定義域
(Ⅱ)關(guān)于x的方程f(2x)+21g(2x-1)=a在x∈[,]有實(shí)數(shù)解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com