【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足 .
(1)計(jì)算a1 , a2 , a3的值,并猜想{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式.
【答案】
(1)解:當(dāng)n=1時, ,
得a1=1; ,得a2=2,
,得a3=3,
猜想an=n
(2)解:證明:(。┊(dāng)n=1時,顯然成立,
(ⅱ)假設(shè)當(dāng)n=k時,ak=k,
則當(dāng)n=k+1時, = ,
整理得: ,即[ak+1﹣(k+1)][ak+1+(k﹣1)]=0,
結(jié)合an>0,解得ak+1=k+1,
于是對于一切的自然數(shù)n∈N*,都有an=n
【解析】(1)利用遞推關(guān)系式求解數(shù)列a1 , a2 , a3的值,猜想{an}的通項(xiàng)公式;(2)利用數(shù)學(xué)歸納法的證明步驟,逐步證明即可.
【考點(diǎn)精析】利用數(shù)列的通項(xiàng)公式和數(shù)學(xué)歸納法的定義對題目進(jìn)行判斷即可得到答案,需要熟知如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式;數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行運(yùn)動會,其中三級跳遠(yuǎn)的成績在8.0米(四舍五入,精確到0.1米)以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記X表示兩人中進(jìn)入決賽的人數(shù),求X的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過多次測試后發(fā)現(xiàn),甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1) 關(guān)于的方程在區(qū)間上有解,求的取值范圍;
(2) 當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=( )2(x>1)
(1)求f(x)的反函數(shù)及其定義域;
(2)若不等式(1﹣ )f﹣1(x)>a(a﹣ )對區(qū)間x∈[ , ]恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 已知曲線y=f(x)
在處的切線與直線垂直。
(1) 求的值;
(2) 若對任意x≥1,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓的一條直徑的兩個端點(diǎn)分別是(﹣1,3)和(5,﹣5),則此圓的方程是( )
A.x2+y2+4x+2y﹣20=0
B.x2+y2﹣4x﹣2y﹣20=0
C.x2+y2﹣4x+2y+20=0
D.x2+y2﹣4x+2y﹣20=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓上一點(diǎn), 分別為的左、右焦點(diǎn), , , 的面積為.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn),記直線的斜率分別為,當(dāng)最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線過點(diǎn), .
(1)若,求函數(shù)的極值點(diǎn);
(2)設(shè)是函數(shù)的兩個極值點(diǎn),若,證明: .(提示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實(shí)數(shù)a的最大值為( )
A.2
B.
C.4
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com