【題目】當(dāng)前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學(xué)生進行體育測試,是激發(fā)學(xué)生、家長和學(xué)校積極開展體育活動,保證學(xué)生健康成長的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開始時要掌握全年級學(xué)生每分鐘跳繩的情況,隨機抽取了100名學(xué)生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(1)請估計學(xué)生的跳繩個數(shù)的眾數(shù)、中位數(shù)和平均數(shù)(保留整數(shù));
(2)若從跳繩個數(shù)在、兩組中按分層抽樣的方法抽取9人參加正式測試,并從中任意選取2人,求兩人得分之和不大于34分的概率.
【答案】(1)見解析;(2)
【解析】
(1)由頻率分布直方圖可得眾數(shù),由中位數(shù)和平均數(shù)計算公式可得中位數(shù)和平均數(shù)。
(2)由表格可求得跳繩個數(shù)在、兩組中的人數(shù)分別為6和12,根據(jù)分成抽樣規(guī)則可得內(nèi)抽取3人,內(nèi)抽取6人。由古典概型概率求法即可得解。
(1)眾數(shù)為
中位數(shù)
平均數(shù)(個)
(2)跳繩個數(shù)在內(nèi)的人數(shù)為個
跳繩個數(shù)在內(nèi)的人數(shù)為個
按分層抽樣的方法抽取9人,則內(nèi)抽取3人,內(nèi)抽取6人
經(jīng)列舉得基本事件總數(shù)為36種
經(jīng)列舉得發(fā)生事件包含基本事件數(shù)為3種
則
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總?cè)藬?shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)加工生產(chǎn)一批珠寶,要求每件珠寶都按統(tǒng)一規(guī)格加工,每件珠寶的原材料成本為3.5萬元,每件珠寶售價(萬元)與加工時間(單位:天)之間的關(guān)系滿足圖1,珠寶的預(yù)計銷量(件)與加工時間(天)之間的關(guān)系滿足圖2.原則上,單件珠寶的加工時間不能超過55天,企業(yè)支付的工人報酬為這批珠寶銷售毛利潤的三分之一,其他成本忽略不計算.
(1)如果每件珠寶加工天數(shù)分別為6,12,預(yù)計銷量分別會有多少件?
(2)設(shè)工廠生產(chǎn)這批珠寶產(chǎn)生的純利潤為(萬元),請寫出純利潤(萬元)關(guān)于加工時間(天)之間的函數(shù)關(guān)系式,并求純利潤(萬元)最大時的預(yù)計銷量.
注:毛利潤=總銷售額-原材料成本,純利潤=毛利潤-工人報酬
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟收入的不斷增加,個人購買家庭轎車已不再是一種時尚.車的使用費用,尤其是隨著使用年限的增多,所支出的費用到底會增長多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計得出某款車的使用年限x與所支出的總費用y(萬元)有如表的數(shù)據(jù)資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
總費用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)求線性回歸方程;
(2)估計使用年限為12年時,使用該款車的總費用是多少萬元?
線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標系與參數(shù)方程]
在直角坐標系中,已知曲線的參數(shù)方程為 為參數(shù)以原點為極點x軸正半軸為極軸建立極坐標系,直線的極坐標方程為:,直線的極坐標方程為.
(Ⅰ)寫出曲線的極坐標方程,并指出它是何種曲線;
(Ⅱ)設(shè)與曲線交于兩點,與曲線交于兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
求函數(shù)的單調(diào)區(qū)間和極值;
設(shè),且、是曲線上的任意兩點,若對任意的,直線AB的斜率恒大于常數(shù)m,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“雙一流類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機抽取了100人進行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)將同一組數(shù)據(jù)用該區(qū)間的中點值作代表,求這100人月薪收入的樣本平均數(shù);
(2)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動費用,有兩種收費方案:
方案一:設(shè)區(qū)間,月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收取600元,月薪落在區(qū)間右側(cè)的每人收取800元;
方案二:每人按月薪收入的樣本平均數(shù)的收;
用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進行估算,哪一種收費方案能收到更多的費用?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左,右頂點分別為,,長軸長為,且經(jīng)過點.
(1)求橢圓的標準方程;
(2)若為橢圓上異于,的任意一點,證明:直線,的斜率的乘積為定值;
(3)已知兩條互相垂直的直線,都經(jīng)過橢圓的右焦點,與橢圓交于,和,四點,求四邊形面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com