【題目】已知函數(shù),若存在實數(shù)t,使得任給,不等式恒成立,則m的最大值為( )
A.3B.6C.8D.9
【答案】D
【解析】
由當x∈[1,m]時,f(x+t)≤x恒成立,即g(x)=f(x+t)﹣x≤0恒成立,則需滿足g(1)≤0且g(m)≤0,解出t的范圍,討論m的取值即可得到m的最大值.
解:設g(x)=f(x+t)﹣x(x+t)2﹣xx2+(t﹣1)xt2,
由題意f(x+t)≤x對任意的x∈[1,m](m>1)恒成立,
即g(1)≤0且g(m)≤0.
由g(1)≤0,即(1+t)2﹣1≤0,得t∈[﹣3,1],
由g(m)≤0,即(m+t)2﹣m≤0,得m2+(2t﹣4)m+t2≤0,
則當t=1時,得到m2﹣2m+1≤0,解得m=1;
當t=﹣3時,得到m2﹣10m+9≤0,解得1≤m≤9.
綜上所述m的取值范圍為[1,9]
∴m的最大值為9.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,和交于一點,除以外的其余各棱長均為2.
作平面與平面的交線,并寫出作法及理由;
求證:平面平面;
若多面體的體積為2,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(1)請估計學生的跳繩個數(shù)的眾數(shù)、中位數(shù)和平均數(shù)(保留整數(shù));
(2)若從跳繩個數(shù)在、兩組中按分層抽樣的方法抽取9人參加正式測試,并從中任意選取2人,求兩人得分之和不大于34分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中學生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結果,并作出頻數(shù)統(tǒng)計表如下:
表一:男生
男生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 | 5 |
表二:女生
女生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 | 3 |
(1)求,的值;
(2)從表一、二中所有尚待改進的學生中隨機抽取3人進行交談,記其中抽取的女生人數(shù)為,求隨機變量的分布列及數(shù)學期望;
(3)由表中統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認為“測評結果優(yōu)秀與性別有關”.
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 | 45 |
參考公式:,其中.
參考數(shù)據(jù):
0.01 | 0.05 | 0.01 | |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)設.
①若,求函數(shù)的零點;
②若函數(shù)存在零點,求的取值范圍.
(2)設,若對任意恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點
(1)求橢圓的方程;
(2)設不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關數(shù)據(jù)如下表所示,則下列說法錯誤的是( )
A.可以預測,當時,B.
C.變量之間呈負相關關系D.該回歸直線必過點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖像向右平移個單位后得到函數(shù),則具有性質(zhì)( )
A.最大值為1,圖像關于直線對稱
B.周期為,圖像關于點對稱
C.在上單調(diào)遞增,為偶函數(shù)
D.在上單調(diào)遞減,為奇函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com