已知,且u=x2+y2-4x-4y+8,則u的最小值為( )
A.
B.
C.
D.
【答案】分析:求解目標(biāo)u=x2+y2-4x-4y+8=(x-2)2+(y-2)2,其幾何意義是坐標(biāo)平面內(nèi)的點P(x,y)到點(2,2)的距離的平方,而點P在平面區(qū)域內(nèi),畫出區(qū)域,分析圖形之間的關(guān)系即可.
解答:解:不等式組所表示的平面區(qū)域是如圖中的△ABC,
根據(jù)題意只能是點(2,2)到直線x+y-1=0的距離最小,
這個最小值是,
故所求的最小值是
故選B.
點評:本題考查二元一次不等式組所表示的平面區(qū)域、而二元函數(shù)的幾何意義和數(shù)形結(jié)合思想.這類問題解題的關(guān)鍵是在數(shù)形結(jié)合思想指導(dǎo)下,二元函數(shù)幾何意義的運用,本題中點(2,2)能保證是在圖中的圓與直線x+y-1=0的切點處是問題的最優(yōu)解,但如果目標(biāo)函數(shù)是u=x2+y2-4y+4,則此時的最優(yōu)解就不是直線與圓的切點,而是區(qū)域的定點C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
x+y-1≤0
x-y+1>0
y≥-1
,且u=x2+y2-4x-4y+8,則u的最小值為( 。
A、
3
2
2
B、
9
2
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:y=f(x)定義域為[-1,1],且滿足:f(-1)=f(1)=0,對任意u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(1)判斷函數(shù)p(x)=x2-1 是否滿足題設(shè)條件?
(2)判斷函數(shù)g(x)=
1+x,x∈[-1,0]
1-x,x∈[0,1]
,是否滿足題設(shè)條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x+y-1≤0
x-y+1≥0
y≥-1
,且u=x2+y2-4x-4y+8,則u的最小值為
9
2
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知U=R,且{x|
2
x
≥1},B={x|y=
x2-2x-3
},求A∪B和(?RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知
x+y-1≤0
x-y+1>0
y≥-1
,且u=x2+y2-4x-4y+8,則u的最小值為( 。
A.
3
2
2
B.
9
2
C.
2
2
D.
1
2

查看答案和解析>>

同步練習(xí)冊答案