已知等差數(shù)列{an}的前n項和為Sn,點2a5=a10,且S5=120.求an和Sn
考點:等差數(shù)列的前n項和,等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)題意,求出等差數(shù)列的首項a1和公差d,即可求出通項公式an與前n項和Sn
解答: 解:設(shè)等差數(shù)列的首項為a1,公差為d,
則S5=5a1+
5×4
2
d=120,
∴a1+2d=24;
又2(a1+4d)=a1+9d,
∴a1=d;
∴a1=8,d=8;
∴an=a1+(n-1)d=8n,
∴Sn=
n(a1+an)
2
=
n(8+8n)
2
=4n2+4n.
點評:本題考查了等差數(shù)列的應用問題,解題時應熟記等差數(shù)列的通項公式an與前n項和公式Sn,并能靈活運用,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列說法正確的是( 。
A、命題“?x∈R,使得x2+x-1>0”的否定是“?x∈R,x2+x-1<0”
B、命題p:“?x∈R,sinx+cosx≤
2
”,則¬p是真命題
C、“x=-1”是“x2-2x-3=0”的必要不充分條件
D、“0<a<1”是“函數(shù)f(x)=ax(a>0,a≠1)在R上為減函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若|MN|=2
3
,則k的值為( 。
A、k=-
4
3
B、k=-
3
4
C、k=0或k=-
4
3
D、k=0或k=-
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足(a+b)(sinA-sinB)-(a-c)sinC=0.
(1)求角B的大。
(2)若cos2
A
2
=
1
2
+
5
10
,求tanC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過點M(1,0)的直線交橢圓C:x2+3y2=6于A,B兩點.
(1)求弦AB中點的軌跡方程;
(2)若F為橢圓C的左焦點,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,弦CD與AB垂直,并與AB相交于點E,點F為弦CD上異于點E的任意一點,連接BF、AF并延長交⊙O于點M、N.
(1)求證:B、E、F、N四點共圓;
(2)求證:AC2+BF•BM=AB2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=ax2+bx+c與x軸交于A(-1,0)、B(3,0),與y軸交于C點,且OC=3OA.
(1)求拋物線的函數(shù)解析式;
(2)若點P(m,n)是直線BC上方的拋物線一點,過P作PN∥OC交BC于N,設(shè)PN=h,求h關(guān)于m的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,若a=
5
,b=3,
5
sinC=2sinA,求sin(A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
2x-1
≤x-2的解集為
 

查看答案和解析>>

同步練習冊答案