【題目】如圖所示是一個(gè)正方體的平面展開(kāi)圖,在這個(gè)正方體中平面ADE;平面ABF;平面平面AFN;平面平面NCF.以上四個(gè)命題中,真命題的序號(hào)是  

A. B. C. D.

【答案】A

【解析】

把正方體的平面展開(kāi)圖還原成正方體ABCAEFMN,得出BM∥平面ADNE,判斷①正確;由平面DCMN∥平面ABFE,得出CN∥平面ABFE,判斷②正確;由BDFN,得出BD∥平面AFN,同理BM∥平面AFN,證明平面BDM∥平面AFN,判斷③正確;由BDFN,BECN,且BDBEB,證明平面BDE∥平面NCF,判斷④正確.

把正方體的平面展開(kāi)圖還原成正方體ABCAEFMN,如圖1所示;

對(duì)于①,平面BCMF∥平面ADNE,BM平面BCMF,

BM∥平面ADNE,①正確;

對(duì)于②,平面DCMN∥平面ABFECN平面DCMN

CN∥平面ABFE,②正確;

對(duì)于③,如圖2所示,

BDFNBD平面AFN,FN平面AFN,∴BD∥平面AFN;

同理BM∥平面AFN,且BDBMB

∴平面BDM∥平面AFN,③正確;

對(duì)于④,如圖3所示,

BDFNBECN,BDBEB,且BDBE平面BDE,

∴平面BDE∥平面NCF,∴④正確.

綜上,正確的命題序號(hào)是

故答案為:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】節(jié)能燈的質(zhì)量通過(guò)其正常使用時(shí)間來(lái)衡量,使用時(shí)間越長(zhǎng),表明質(zhì)量越好,且使用時(shí)間大于或等于6千小時(shí)的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用A,B兩種不同型號(hào)的節(jié)能燈做試驗(yàn),各隨機(jī)抽取部分產(chǎn)品作為樣本,得到試驗(yàn)結(jié)果的頻率分布直方圖如圖所示.

以上述試驗(yàn)結(jié)果中使用時(shí)間落入各組的頻率作為相應(yīng)的概率.

(1)現(xiàn)從大量的A,B兩種型號(hào)節(jié)能燈中各隨機(jī)抽取兩件產(chǎn)品,求恰有兩件是優(yōu)質(zhì)品的概率;

(2)已知A型節(jié)能燈的生產(chǎn)廠家對(duì)使用時(shí)間小于6千小時(shí)的節(jié)能燈實(shí)行“三包”.通過(guò)多年統(tǒng)計(jì)發(fā)現(xiàn),A型節(jié)能燈每件產(chǎn)品的利潤(rùn)y(單位:元)與其使用時(shí)間t(單位:千小時(shí))的關(guān)系如下表:

使用時(shí)間t(單位:千小時(shí))

t<4

4≤t<6

t≥6

每件產(chǎn)品的利潤(rùn)y(單位:元)

-10

10

20

若從大量的A型節(jié)能燈中隨機(jī)抽取兩件,其利潤(rùn)之和記為X(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的極坐標(biāo)方程為:ρ2-4ρcos(θ-)+6=0.

(1)將極坐標(biāo)方程化為普通方程;

(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2019年春運(yùn)期間十二個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比去年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,給出下列4個(gè)結(jié)論

其中結(jié)論正確的是(

A.深圳的變化幅度最小,北京的平均價(jià)格最高;

B.深圳和廈門往返機(jī)票的平均價(jià)格同去年相比有所下降;

C.平均價(jià)格從高到低位于前三位的城市為北京,深圳,廣州;

D.平均價(jià)格的漲幅從高到低位于前三位的城市為天津,西安,上海.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它們?cè)趚=1處的切線互相平行.

(1)求b的值;

(2)若函數(shù)且方程F(x)=a2有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某市主辦的科技知識(shí)競(jìng)賽的學(xué)生成績(jī)中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組,第一組;第二組;…;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

(1)求成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù);

(2)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選取2名,求至少有1名學(xué)生的成績(jī)?cè)趨^(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)滿足約束條件

1)若點(diǎn)在上述不等式所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍.

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為何值時(shí),方程組

1)有一個(gè)實(shí)數(shù)解,并求出方程組的解集;

2)有兩個(gè)不相等的實(shí)數(shù)解;

3)沒(méi)有實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)促銷活動(dòng),規(guī)定每位顧客從裝有編號(hào)為0,1,2,3四個(gè)相同小球的抽獎(jiǎng)箱中,每次取出一球,記下編號(hào)后放回,連續(xù)取兩次,若取出的兩個(gè)小球號(hào)碼之和等于6,則中一等獎(jiǎng),等于5中二等獎(jiǎng),等于43中三等獎(jiǎng).

1)求中三等獎(jiǎng)的概率;

2)求中獎(jiǎng)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案