設(shè)命題p:函數(shù)f(x)=x2-(2a+1)x+6-3a在(-∞,0)上是減函數(shù);命題q:關(guān)于x的方程x2+2ax-a=0有實(shí)數(shù)根.若命題p是真命題,命題q是假命題,求實(shí)數(shù)a的取值范圍.

答案:
解析:

  命題

  命題

  命題非

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/4408/0015/8ef7fa15cc778f965b176c394d52267a/C/Image86.gif" width=12 height=18>命題是真命題,命題是假命題,

  所以


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)f(x)=x2-2ax與g(x)=x+
ax
在區(qū)間[1,2]都是減函數(shù)

命題q:函數(shù)y=log3(x2-2x+a)值域A⊆[2,+∞).
若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東至縣一模)設(shè)命題p:函數(shù)f(x)=(a-
32
)x
是R上的減函數(shù),命題q:函數(shù)f(x)=x2-4x+3在[0,a]的值域?yàn)閇-1,3].若“p且q”為假命題,“p或q”為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)f(x)=lg(ax2-x+
1
4
a)
的定義域?yàn)镽;命題q:不等式3x-9x<a對(duì)一切正實(shí)數(shù)均成立.如果命題“p或q”為真命題,且“p且q”為假命題,則實(shí)數(shù)a的取值范圍是( 。
A、(1,+∞)
B、[0,1]
C、[0,+∞)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)f(x)=
a
x
(a>0)
在區(qū)間(1,2)上單調(diào)遞增;命題q:不等式|x-1|-|x+2|<4a對(duì)任意x∈R都成立,若pVq是真命題,p∧q是假命題,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)f(x)=lg(ax2-x+
1
16
a)
的值域?yàn)镽;命題q:不等式3x-9x<a對(duì)一切正實(shí)數(shù)x均成立,如果命題p和q不全為真命題,則實(shí)數(shù)a的取值范圍是
0≤a≤
1
4
或a>2
0≤a≤
1
4
或a>2

查看答案和解析>>

同步練習(xí)冊(cè)答案