設P為△ABC內一點,且,則△ABP的面積與△ABC面積之比為   
【答案】分析:本題考查的知識點是向量在幾何中的應用,及三角形面積的性質,由△ABP與△ABC為同底不等高的三角形,故高之比即為兩個三角面積之間,連接CP并延長后,我們易得到CP與CD長度的關系,進行得到△ABP的面積與△ABC面積之比.
解答:解:連接CP并延長,交AB于D,
,

,
則△ABP的面積與△ABC面積之比為
故答案為:
點評:三角形面積性質:同(等)底同(等)高的三角形面積相等;同(等)底三角形面積這比等于高之比;同(等)高三角形面積之比等于底之比.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設P為△ABC內一點,且
AP
=
3
4
AB
+
1
5
AC
,則△ABP的面積與△ABC面積之比為( 。
A、
1
4
B、
3
4
C、
1
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網設P為△ABC內一點,且
AP
=
2
5
AB
+
1
5
AC
,則△ABP的面積與△ABC面積之比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P為△ABC內一點,若
AP
=
2
5
AB
+
1
5
AC
,則△ABP的面積與△BCP的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設P為△ABC內一點,且
AP
=
2
5
AB
+
1
5
AC
,則△ABP的面積與△ABC的面積之比為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•武漢模擬)如圖,設P為△ABC內一點,且
AP
=
2
5
AB
+
1
5
AC
,則
S△ABP
S△ABC
=(  )

查看答案和解析>>

同步練習冊答案