【題目】若實數(shù)x,y滿足不等式組 ,則z=2|x|+y的最大植為
【答案】11
【解析】解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由 ,解得B(6,﹣1),
由 解得C(﹣2,﹣1),
當x≥0時,z=2x+y,即y=﹣2x+z,x≥0,
當x<0時,z=﹣2x+y,即y=2x+z,x<0,
當x≥0時,平移直線y=﹣2x+z,(紅線),
當直線y=﹣2x+z經(jīng)過點A(0,﹣1)時,
直線y=﹣2x+z的截距最小為z=﹣1,
當y=﹣2x+z經(jīng)過點B(6,﹣1)時,
直線y=﹣2x+z的截距最大為z=11,此時﹣1≤z≤11.
當x<0時,平移直線y=2x+z,(藍線),
當直線y=2x+z經(jīng)過點A(0,﹣1)時,直線y=2x+z的截距最小為z=﹣1,
當y=2x+z經(jīng)過點C(﹣2,﹣1)時,
直線y=2x+z的截距最大為z=4﹣1=3,此時﹣1≤z≤3,
綜上﹣1≤z≤11,
故z=2|x|+y的取值范圍是[﹣1,11],
故z的最大值為11,
所以答案是:11.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,圓: 的圓心在橢圓上,點到橢圓的右焦點的距離為.
(1)求橢圓的標準方程;
(2)過點作互相垂直的兩條直線,且交橢圓于兩點,直線交圓于, 兩點,且為的中點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的個數(shù)是 ①對于命題p:x∈R,使得x2+x+1<0,則p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③設(shè)ξ~B(n,p),已知Eξ=3,Dξ= ,則n與p值分別為12,
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標系xOy中,曲線C1: (θ為參數(shù)),在以平面直角坐標系的原點O為極點,x軸的正半軸為極軸,取相同單位長度的極坐標系中,曲線C2:ρsin( )=1.
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)曲線C1上恰好存在三個不同的點到曲線C2的距離相等,分別求這三個點的極坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系xOy中,已知橢圓 的左焦點為F,離心率為 ,過點F且垂直于長軸的弦長為 .
(I)求橢圓C的標準方程;
(Ⅱ)設(shè)點A,B分別是橢圓的左、右頂點,若過點P(﹣2,0)的直線與橢圓相交于不同兩點M,N.
(i)求證:∠AFM=∠BFN;
(ii)求△MNF面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:的焦點為F,過點F的直線l與E交于A,C兩點
(1)分別過A,C兩點作拋物線E的切線,求證:拋物線E在A、C兩點處的切線互相垂直;
(2)過點F作直線l的垂線與拋物線E交于B,D兩點,求四邊形ABCD的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(xi , yi)(i=1,2,…,6),如表所示:
試銷單價x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知 =80.
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程 ;可供選擇的數(shù)據(jù): ,
(Ⅲ)用 表示用(Ⅱ)中所求的線性回歸方程得到的與xi對應(yīng)的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)(xi , yi)對應(yīng)的殘差的絕對值 時,則將銷售數(shù)據(jù)(xi , yi)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)ξ的分布列和數(shù)學(xué)期望E(ξ).
(參考公式:線性回歸方程中 , 的最小二乘估計分別為 , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com