【題目】若函數(shù)滿足:,則稱(chēng)為“函數(shù)”.
(1)試判斷是否為“函數(shù)”,并說(shuō)明理由;
(2)若為“函數(shù)”且,
(ⅰ)求證:的零點(diǎn)在上;
(ii)求證:對(duì)任意,存在,使在上恒成立.
【答案】(1)是“函數(shù)”,理由見(jiàn)解析;(2)(i)證明見(jiàn)解析;(ii)證明見(jiàn)解析.
【解析】
試題分析:(1)因?yàn)?/span>滿足,所以是“函數(shù)”;(2)(i)由
且,解得,根據(jù)函數(shù)和都在上單調(diào)遞增,可得單調(diào)遞增,再根據(jù)零點(diǎn)存在性定理可判斷零點(diǎn)在上;(ii)由(i)可知,且,又因?yàn)楹瘮?shù)單調(diào)遞增,所以在時(shí),,所以存在,使在上恒成立.
試題解析:解:(1)∵,
∴為“函數(shù)”.
(2)∵①
②
∴①+②得:,∴.
(ⅰ)∵與均為增函數(shù),∴在上為贈(zèng)函數(shù),
又,∴的唯一零點(diǎn)必在上.
∵,,∴的唯一零點(diǎn)在上.
(ⅱ)由(ⅰ)知,的零點(diǎn),且,
又在上為增函數(shù),∴在上恒成立,
∴對(duì)任意,存在,使在上恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某加工廠用某原料由車(chē)間加工出 產(chǎn)品,由乙車(chē)間加工出 產(chǎn)品.甲車(chē)間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克 產(chǎn)品,每千克 產(chǎn)品獲利40元.乙車(chē)間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克 產(chǎn)品,每千克 產(chǎn)品獲利50元.甲、乙兩車(chē)間每天共能完成至多70箱原料的加工,每天甲、乙車(chē)間耗費(fèi)工時(shí)總和不得超過(guò)480小時(shí),甲、乙兩車(chē)間每天獲利最大的生產(chǎn)計(jì)劃為( )
A. 甲車(chē)間加工原料10箱,乙車(chē)間加工原料60箱
B. 甲車(chē)間加工原料15箱,乙車(chē)間加工原料55箱
C. 甲車(chē)間加工原料18箱,乙車(chē)間加工原料50箱
D. 甲車(chē)間加工原料40箱,乙車(chē)間加工原料30箱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)證明函數(shù)在上是減函數(shù),上是增函數(shù);
(2)若方程有且只有一個(gè)實(shí)數(shù)根,判斷函數(shù)的奇偶性;
(3)在(2)的條件下探求方程的根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)若是關(guān)于的方程的一個(gè)解,求的值;
(Ⅱ)當(dāng)且時(shí),解不等式;
(Ⅲ)若函數(shù)在區(qū)間上有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若pVq是假命題,則( )
A. p,q至少有一個(gè)是假命題 B. p,q 均為假命題
C. p,q中恰有一個(gè)是假命題 D. p,q至少有一個(gè)是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象過(guò)點(diǎn),對(duì)任意滿足,且最小值是.
(1)求的解析式;
(2)設(shè)函數(shù),其中,求在區(qū)間上的最小值;
(3)若在區(qū)間上,函數(shù)的圖象恒在函數(shù)的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形的周長(zhǎng)是18,底邊長(zhǎng)y是一腰長(zhǎng)x的函數(shù),則( )
A.y=9-x(0<x≤9)
B.y=9-x(0<x<9)
C.y=18-2x(4.5≤x≤9)
D.y=18-2x(4.5<x<9)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么下列對(duì)立的兩個(gè)事件是( )
A. “至少1名男生”與“至少有1名是女生”
B. 恰好有1名男生”與“恰好2名女生”
C. “至少1名男生”與“全是男生”
D. “至少1名男生”與“全是女生”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某租賃公司擁有汽車(chē)100輛,當(dāng)每輛車(chē)的月租金為3000元時(shí),可全部租出;當(dāng)每輛車(chē)的月租金每增加50元時(shí),未租出的車(chē)將會(huì)增加一輛,租出的車(chē)每輛每月需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出多少輛車(chē)?
(2)當(dāng)每輛車(chē)的月租金為多少元時(shí),租賃公司的月收益最大?最大收益為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com