3.某三棱錐的三視圖如圖所示,其體積V=( 。
A.$\frac{80}{\begin{array}{l}3\end{array}}$B.$\frac{40}{\begin{array}{l}3\end{array}}$C.80D.40

分析 由幾何體的三視圖得到該幾何體底面為俯視圖,高為4的三棱錐,根據(jù)數(shù)據(jù)求出體積即可.

解答 解:由幾何體的三視圖得,
該幾何體的底面為俯視圖,高為4的三棱錐,
體積為V=$\frac{1}{3}$Sh
=$\frac{1}{3}$×$\frac{1}{2}$×(2+3)×4×4
=$\frac{40}{3}$.
故選:B.

點評 本題考查了三棱錐的三視圖以及求體積的應用問題,也考查了利用三視圖中的數(shù)據(jù)計算體積的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖所示,幾何體為一個球挖去一個內(nèi)接正方體得到的組合體,現(xiàn)用一個經(jīng)過球心的平面截它,所得的截面圖形不可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=ax+blnx在點(1,a)處的切線方程為y=-x+3.
①求a,b的值;
②求函數(shù)$g(x)=f(x)-\frac{1}{x}$在區(qū)間$[{\frac{1}{2},2}]$上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知⊙C:x2+(y-1)2=5,直線l:mx-y+1-m=0.
(1)求證:對任意實數(shù)m,直線與⊙C總有兩個不同的公共點;
(2)求直線被⊙C截得的線段最短時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某高!敖y(tǒng)計初步”課程的教師為了判斷主修統(tǒng)計專業(yè)是否與性別有關,隨機調(diào)查了該選修課的一些學生情況.23名男生中,有10人是統(tǒng)計專業(yè);27名女生中,有20人是統(tǒng)計專業(yè).
(1)根據(jù)統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表.
非統(tǒng)計專業(yè)統(tǒng)計專業(yè)總計
總計
(2)如果判斷主修統(tǒng)計專業(yè)與性別有關,那么這種判斷出錯的概率最大不超過多少?
附表:
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a∈R)
(1)當a=$\frac{2}{3}$時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設g(x)=(x2-2x)ex,如果對任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-ax+3,a∈R.
(1)當a=1時,計算函數(shù)的極值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知正四棱錐P-ABCD的五個頂點都在同一個球面上,若該正四棱錐的底面邊長為4,側(cè)棱長為$2\sqrt{6}$,則此球的體積為36π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}{x^2}+ax-2{a^2}$lnx(a≠0).
(I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案