8.已知f(x)=x4+4x3+6x2+4x+1,則f(9)=10000.

分析 由已知得f(x)=(((x+4)x+6)x+4)x+1,由此能求出f(9)的值.

解答 解:∵f(x)=x4+4x3+6x2+4x+1,
∴f(x)=(((x+4)x+6)x+4)x+1,
v0=1,v1=9+4=13,v2=13×9+6=123,
v3=123×9+4=1111,v4=1111×9+1=10000,
∴f(9)=10000.
故答案為:10000.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意秦九韶算法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}$),x∈R
(1)函數(shù)的最小正周期;
(2)函數(shù)單調(diào)增區(qū)間;
(3)函數(shù)的最小值及取得最小值時(shí)x的值;
(4)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x>y>0,且m=$\frac{1}{2x(x-y)}$,n=${x}^{2}+\frac{1}{xy}$,則m+$\frac{n}{2}$的最小值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知sinx-cosx=$\frac{1}{5}$(0≤x<π),則tanx等于( 。
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若曲線y=$\sqrt{1-{x}^{2}}$與直線y=x+b始終有交點(diǎn),則b的取值范圍是[-1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)F1、F2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦點(diǎn),過F1且垂直于x軸的直線與橢圓交于 M、N兩點(diǎn),若△M NF2為等腰直角三角形,則該橢圓的離心率e為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-1+\sqrt{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.Sn為數(shù)列{an}的前n項(xiàng)和,a1=1,${S_n}=\frac{n}{n-1}{S_{n-1}}+n$(n≥2,n∈N+).
(1)求{an}的通項(xiàng)公式;
(2)設(shè)${c_n}={2^{a_n}}•{a_n}$,求{cn}的前n項(xiàng)和 Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,C∈R),若函數(shù)f(x)的最小值是f(-1)=0,f(0)=1且對(duì)稱軸是x=-1,g(x)=$\left\{\begin{array}{l}{f(x)(x>0)}\\{-f(x)(x<0)}\end{array}\right.$
(1)求g(2)+g(-2)的值;
(2)求f(x)在區(qū)間[t,t+2](t∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.先化簡(jiǎn),再求值:$\frac{{{x^2}-x}}{{{x^2}-1}}×(2+\frac{{{x^2}+1}}{x})$,其中x=$\sqrt{2}$-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案