袋中有12個小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率為
1
4
,得到黑球或黃球的概率是
5
12
,得到黃球或綠球的概率是
1
2
,試求得到黑球、黃球、綠球的概率各是多少?
考點:等可能事件的概率
專題:計算題
分析:分別以A、B、C、D表示事件:從袋中任取一球“摸到紅球”、“摸到黑球”、“摸到黃球”、“摸到綠球”,則由題意得到三個和事件的概率,求解方程組得答案.
解答: 解:從袋中任取一球,記事件“摸到紅球”“摸到黑球”“摸到黃球”“摸到綠球”分別為A、B、C、D.則有P(B∪C)=P(B)+P(C)=
5
12
,P(D∪C)=P(D)+P(C)=
1
2
,
P(B∪C∪D)=1-P(A)=1-
1
4
=
3
4

解得:P(B)=
1
4
,P(C)=
1
6
,P(D)=
1
3

∴得到黑球、黃球、綠球的概率分別是
1
4
1
6
、
1
3
點評:本題考查了等可能事件的概率,考查了互斥事件的概率加法公式,關(guān)鍵是明確互斥事件和的概率等于概率的和,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

用“輾轉(zhuǎn)相除法”求得3459和3357的最大公約數(shù)是( 。
A、3B、9C、17D、51

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
-2x+a
2x+1+b
(a,b為實常數(shù)).
(1)當a=b=1時,證明:①f(x)不是奇函數(shù);②f(x)是R上的單調(diào)遞減函數(shù).
(2)設(shè)f(x)是奇函數(shù),求a與b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={4,5,6,8},B={5,7,8,9},則集合A∩B是( 。
A、{4,5,6}
B、{5,6,8}
C、{9,8}
D、{5,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某車站在春運期間為了了解旅客購票情況,隨機抽樣調(diào)查了100名旅客從開始在售票窗口排隊到購到車票所用的時間t(以下簡稱為購票用時,單位為min),如圖是這次調(diào)查統(tǒng)計分析得到的頻率分布表和頻率分布直方圖(如圖所示).
分組 頻數(shù) 頻率
一組 0≤t<5 0 0
二組 5≤t<10 10 0.10
三組 10≤t<15 10
四組 15≤t<20 0.50
五組 20≤t≤25 30 0.30
合計 100 1.00
解答下列問題:
(1)這次抽樣的樣本容量是多少?
(2)在表中填寫出缺失的數(shù)據(jù)并補全頻率分布直方圖;
(3)求旅客購票用時的平均數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos
4
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標平面上,不等式組
y≤x+2
y≥0
0≤x≤t
所表示的平面區(qū)域的面積為
5
2
,則t的值為( 。
A、-
3
3
B、-5或1
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=a2x-
1
2
ax(a>0,且a≠1)
(1)求f(x)的值域;
(2)解不等式f(x)
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2cos10°
cos20°
-tan20°
=( 。
A、1
B、
3
-1
2
C、
3
D、
3
2

查看答案和解析>>

同步練習冊答案