【題目】在ABC中,角A,B,C的對邊分別是a,b,c,已知2acosA=-(ccosB+bcosC)。
(1)求角A;
(2)若b=2,且ABC的面積為,求a的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形ABCD一邊CD所在直線的方程為x+3y-13=0,對角線AC,BD的交點為P(1,5),求正方形ABCD其他三邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x||x+1|<1},B={x|( )x﹣2≥0},則A∩RB=( )
A.(﹣2,﹣1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直l的參數(shù)方程是 (t是參數(shù))
(1)將曲線C的極坐標方程化為直角坐標方程;
(2)若直線l與曲線C相交于A、B兩點,且|AB|= ,求直線的傾斜角α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某便利店計劃每天購進某品牌鮮奶若干件,便利店每銷售一瓶鮮奶可獲利元;若供大于求,剩余鮮奶全部退回,但每瓶鮮奶虧損元;若供不應求,則便利店可從外調(diào)劑,此時每瓶調(diào)劑品可獲利元.
(1)若便利店一天購進鮮奶瓶,求當天的利潤(單位:元)關于當天鮮奶需求量(單位:瓶,)的函數(shù)解析式;
(2)便利店記錄了天該鮮奶的日需求量(單位:瓶,)整理得下表:
日需求量 | ||||||
頻數(shù) |
若便利店一天購進瓶該鮮奶,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天利潤在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某班一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100],據(jù)此解答如下問題.
(Ⅰ)求全班人數(shù)及分數(shù)在[80,100]之間的頻率;
(Ⅱ)現(xiàn)從分數(shù)在[80,100]之間的試卷中任取 3 份分析學生情況,設抽取的試卷分數(shù)在[90,100]的份數(shù)為X,求X的分布列和數(shù)學望期.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位需要從甲、乙兩人中選拔一人參加新崗位培訓,特別組織了5個專項的考試,成績統(tǒng)計如下:
第一項 | 第二項 | 第三項 | 第四項 | 第五項 | |
甲的成績 | 81 | 82 | 79 | 96 | 87 |
乙的成績 | 94 | 76 | 80 | 90 | 85 |
(1)根據(jù)有關統(tǒng)計知識,回答問題:若從甲、乙2人中選出1人參加新崗位培訓,你認為選誰合適,請說明理由;
(2)根據(jù)有關概率知識,解答以下問題:
從甲、乙兩人的成績中各隨機抽取一個,設抽到甲的成績?yōu)?/span>,抽到乙的成績?yōu)?/span>,用表示滿足條件的事件,求事件的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com