【題目】已知函數(shù) 的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間 上的單調(diào)性.

【答案】
(1)解:函數(shù)

化簡得Lf(x)=4cosωx( cosωx﹣ sinωx)=2cos2ωx﹣ sin2ωx=1+cos2ωx﹣ sin2ωx=2cos(2ωx )+1.

因為函數(shù) 的最小正周期為π,即T= ,

解得:ω=1,

則:f(x)=2cos(2x )+1.

故得ω的值為1


(2)解:由(1)可得f(x)=2cos(2x )+1.

當x在區(qū)間 上時,故得: ,

時,即 時,函數(shù)f(x)=2cos(2x )+1為減函數(shù).

當π 時,即 時,函數(shù)f(x)=2cos(2x )+1為增函數(shù).

所以,函數(shù)f(x)=2cos(2x )+1為減區(qū)間為 ,增區(qū)間為


【解析】(1)將函數(shù)進行化簡,再利用周期公式求ω的值.(2)當x在區(qū)間 上時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求單調(diào)性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某煤礦發(fā)生透水事故時,作業(yè)區(qū)有若干人員被困.救援隊從入口進入之后有L1,L2兩條巷道通往作業(yè)區(qū)(如下圖),L1巷道有A1,A2A3三個易堵塞點,各點被堵塞的概率都是L2巷道有B1,B2兩個易堵塞點,被堵塞的概率分別為.

(1)求L1巷道中,三個易堵塞點最多有一個被堵塞的概率;

(2)若L2巷道中堵塞點個數(shù)為X,求X的分布列及均值E(X),并按照“平均堵塞點少的巷道是較好的搶險路線”的標準,請你幫助救援隊選擇一條搶險路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的各項均為正數(shù),a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)當k=1,p=5時,若數(shù)列{an}成等比數(shù)列,求t的值;
(2)設數(shù)列{an}是一個等比數(shù)列,求{an}的公比及t(用p、k的代數(shù)式表示);
(3)當k=1,t=1時,設Tn=a1+ + +…+ + ,參照教材上推導等比數(shù)列前n項和公式的推導方法,求證:{ Tn ﹣6n}是一個常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y= cosx+sinx(x∈R)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關于y軸對稱,則m的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從一批柚子中,隨機抽取100個,獲得其重量(單位:克)數(shù)據(jù)按照區(qū)間,,進行分組,得到概率分布直方圖,如圖所示.

(1)根據(jù)頻率分布直方圖計算抽取的100個柚子的重量眾數(shù)的估計值.

(2)用分層抽樣的方法從重量在的柚子中共抽取5個,其中重量在的有幾個?

(3)在(2)中抽出的5個柚子中,任取2人,求重量在的柚子最多有1個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別是a,b,c,已知2acosA=-(ccosB+bcosC)。

(1)求角A;

(2)若b=2,且ABC的面積為,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】日,“國際教育信息化大會”在山東青島開幕.為了解哪些人更關注“國際教育信息化大會”,某機構(gòu)隨機抽取了年齡在-歲之間的人進行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為:,,.把年齡落在區(qū)間內(nèi)的人分別稱為“青少年”和“中老年”.

關注

不關注

合計

青少年

中老年

合計

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)保留兩位小數(shù)和眾數(shù);

(2)根據(jù)已知條件完成列聯(lián)表,并判斷能否有的把握認為“中老年”比“青少年”更加關注“國際教育信息化大會”;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,若n=4時,則輸出的結(jié)果為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)= ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)﹣g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(Ⅱ)設函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點P、Q,過線段PQ的中點作x軸的垂線分別交C1 , C2于點M、N,證明C1在點M處的切線與C2在點N處的切線不平行.

查看答案和解析>>

同步練習冊答案