5.給出下列四個(gè)命題:
(1)動點(diǎn)到兩個(gè)定點(diǎn)的距離之和為定長,則動點(diǎn)的軌跡為橢圓;
(2)雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1與橢圓$\frac{{x}^{2}}{35}$+y2=1有相同的焦點(diǎn);
(3)點(diǎn)M與點(diǎn)F(0,-2)的距離比它到直線l:y-3=0的距離小1的軌跡方程是x2=-8y;
(4)方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的橢圓的左頂點(diǎn)為A,左、右焦點(diǎn)為F1、F2,D是它短軸的一個(gè)頂點(diǎn).若2$\overrightarrow{D{F}_{1}}$-$\overrightarrow{DA}$=$\overrightarrow{D{F}_{2}}$,則該橢圓的離心率為$\frac{1}{3}$.
其中正確命題的序號(2),(3),(4).

分析 (1)根據(jù)橢圓的定義可判斷;
(2)根據(jù)圓錐曲線焦點(diǎn)的公式可判斷;
(3)利用第二定義或設(shè)點(diǎn)列方程的方法求曲線方程都可以;
(4)利用向量的坐標(biāo)運(yùn)算可得出-2c=a+c.

解答 解:(1)若點(diǎn)M到F1,F(xiàn)2的距離之和恰好為F1,F(xiàn)2兩點(diǎn)之間的距離,則軌跡不是橢圓,故錯(cuò)誤;
(2)根據(jù)定義可知,雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1與橢圓$\frac{{x}^{2}}{35}$+y2=1中c2=34,且在x軸上,故有相同的焦點(diǎn),故正確;
(3)法1:點(diǎn)M與點(diǎn)F(0,-2)的距離比它到直線l:y-3=0的距離小1,
∵點(diǎn)M到點(diǎn)F(0,-2)的距離比它到直線l:y-3=0的距離小1,
設(shè)M(x,y),依題意得
∴由兩點(diǎn)間的距離公式,得
$\sqrt{(x-0)^{2}+(y+2)^{2}}$=|y-3|-1,
根據(jù)平面幾何原理,得y<3,原方程化為=2-y
兩邊平方,得x2+(y+2)2=(2-y)2,整理得x2=-8y
即點(diǎn)M的軌跡方程是x2=-8y,故正確.
法2:也可根據(jù)第二定義可知點(diǎn)M與點(diǎn)F(0,-2)的距離與它到直線l:y-2=0的距離相等,可得焦準(zhǔn)距為8,
可得x2=-8y.
(4)方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的橢圓的左頂點(diǎn)為A,左、右焦點(diǎn)為F1、F2,D是它短軸的一個(gè)頂點(diǎn).
∴D(0,b),A(a,0),F(xiàn)1(-c,0)F2(c,0),
2$\overrightarrow{D{F}_{1}}$-$\overrightarrow{DA}$=$\overrightarrow{D{F}_{2}}$,
∴2(-c,-b)=(c,-b)+(a,-b),
∴-2c=a+c,
∴該橢圓的離心率為$\frac{1}{3}$,故正確.
故答案為(2),(3),(4).

點(diǎn)評 考查了圓錐曲線的定義和向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線x2-$\frac{{y}^{2}}{3}$=1的一條漸近線與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{a}^{2}-4}$=1相交與點(diǎn)P,若|OP|=2,則橢圓離心率為( 。
A.$\sqrt{3}$-1B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=lg$\frac{1+x}{1-x}$(其中x≠±1)是( 。┖瘮(shù).
A.B.C.既奇又偶D.非奇非偶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|-2<x<3},B={x|1<x<2},則A與B的關(guān)系為(  )
A.A=BB.B?AC.A∈BD.A?B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.求函數(shù)f(x)=$\frac{1}{3}$x3-4x+$\frac{1}{3}$的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.f(x)=$\frac{lnx}{x}$的極大值是( 。
A.eB.$\frac{1}{e}$C.-eD.-$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將一顆骰子投擲兩次得到的點(diǎn)數(shù)分別為a,b,則函數(shù)f(x)=ax3+bx2+x存在極值的概率為( 。
A.$\frac{1}{2}$B.$\frac{5}{9}$C.$\frac{7}{12}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在正方體ABCD-A1B1C1D1中,找出二面角D1-BC-D的平面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,已知點(diǎn)D在AB邊上,且$\overrightarrow{CB}$•$\overrightarrow{CD}$=0,sin∠ACB=$\frac{5\sqrt{7}}{14}$,AC=$\sqrt{7}$,AD=1.
(Ⅰ)求CD的長;
(Ⅱ)求角B的大。

查看答案和解析>>

同步練習(xí)冊答案