已知向量
a
=(sin(α+
π
6
),1),
b
=(1,cosα-
3
),若
a
b
,則sin(α+
π
3
)等于( 。
A、1
B、-1
C、
3
D、-
3
考點(diǎn):兩角和與差的正弦函數(shù),平面向量數(shù)量積的運(yùn)算
專(zhuān)題:三角函數(shù)的求值
分析:由垂直和數(shù)量積的關(guān)系可得sin(α+
π
6
)+cosα-
3
=0,由兩角和與差的正弦函數(shù)展開(kāi)后重新組合可得結(jié)論.
解答: 解:∵
a
=(sin(α+
π
6
),1),
b
=(1,cosα-
3
),且
a
b
,
∴sin(α+
π
6
)+cosα-
3
=0,即
3
2
sinα+
1
2
cosα+cosα=
3
,
1
2
sinα+
3
2
cosα=1,即sin(a+
π
3
)=1
故選:A
點(diǎn)評(píng):本題考查兩角和與差的正弦函數(shù),涉及數(shù)量積的運(yùn)輸,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,我們知道,圓環(huán)也可看作線段AB繞圓心O旋轉(zhuǎn)一周所形成的平面圖形,又圓環(huán)的面積S=π(R2-r2)=(R-r)×2π×
R+r
2
.所以,圓環(huán)的面積等于是以線段AB=R-r為寬,以AB中點(diǎn)繞圓心O旋轉(zhuǎn)一周所形成的圓的周長(zhǎng)2π×
R+r
2
為長(zhǎng)的矩形面積.請(qǐng)將上述想法拓展到空間,并解決下列問(wèn)題:若將平面區(qū)域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)繞y軸旋轉(zhuǎn)一周,則所形成的旋轉(zhuǎn)體的體積是
 
.(結(jié)果用d,r表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題或等式正確的是( 。
A、若f(x)是奇函數(shù),則f(0)=0
B、∫
 
2
0
(-x+1)dx=0
C、函數(shù)f(x)=cos2x是周期為π的減函數(shù)
D、若a∈R,則“a2<a”是“a>0”的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向平面區(qū)域Ω={(x,y)|0≤x≤π,-1≤y≤1}投擲一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域M={(x,y)|y>cosx,0≤x≤π}的概率為(  )
A、
1
3
B、
1
2
C、
π
4
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的通項(xiàng)公式為an=(
4
5
2n-4-(
4
5
n-2,則數(shù)列{an}(  )
A、有最大項(xiàng),無(wú)最小項(xiàng)
B、有最小項(xiàng),無(wú)最大項(xiàng)
C、既有最大項(xiàng)又有最小項(xiàng)
D、既無(wú)最大項(xiàng)又無(wú)最小項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果復(fù)數(shù)
2-bi
i3
(其中b∈R)的實(shí)部與虛部互為相反數(shù),則b=( 。
A、2B、-2C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)+b的圖象如圖所示,則S=f(0)+f(1)+…+f(2014)等于( 。
A、0
B、
4025
2
C、
4029
2
D、
4031
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a,b,c均為正實(shí)數(shù).
(Ⅰ)證明:a3+b3≥a2b+ab2
(Ⅱ)當(dāng)a+b+c=1時(shí),證明:(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校自主招生面試成績(jī)的莖葉圖和頻率分布直方圖均受到不同程度的破壞,其可見(jiàn)部分信息如圖所示,據(jù)此解答下列問(wèn)題;
(Ⅰ)求參加此次高校自主招生面試的人數(shù)n、面試成績(jī)的中位數(shù)及分?jǐn)?shù)分別在[80,90),[90,100)內(nèi)的人數(shù);
(Ⅱ)若從面試成績(jī)?cè)赱80,100)內(nèi)的學(xué)生中任選兩人進(jìn)行隨機(jī)復(fù)查,求恰好有一人分?jǐn)?shù)在[90,100)內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案