【題目】在正方體中,有下列結(jié)論:
①平面;
②異面直線AD與所成的角為;
③三棱柱的體積是三棱錐的體積的四倍;
④在四面體中,分別連接三組對棱的中點的線段互相垂直平分.
其中正確的是________(填出所有正確結(jié)論的序號).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)滿足:①對任意實數(shù)都有;②對任意,都有恒成立;③不恒為0,且當(dāng)時,.
(1)求的值;
(2)判斷函數(shù)的奇偶性,并給出你的證明.
(3)定義“若存在非零常數(shù),使得對函數(shù)定義域中的任意一個,均有,則稱為以為周期的周期函數(shù)”.試證明:函數(shù)為周期函數(shù),并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個偉大成就.在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項,依次構(gòu)成數(shù)列,則此數(shù)列的前55項和為( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐S—ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,點E在棱CS上,且CE=λCS.
(1)若,證明:BE⊥CD;
(2)若,求點E到平面SBD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A,B,C,D是空間不共面的四點,它們到平面a的距離之比依次為1:1:1:2,則滿足條件的平面a的個數(shù)是:
A. 1 B. 4 C. 7 D. 8.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線的拋物線經(jīng)過點和.
(1)求拋物線解析式及頂點坐標(biāo);
(2)設(shè)點是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
(2)若不等式對于任意成立,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,準(zhǔn)線為,若點在上,點在上,且是周長為的正三角形.
(1)求的方程;
(2)過點的直線與拋物線相交于兩點,拋物線在點處的切線與交于點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面是菱形的四棱錐中,,,,點在上,且.
(1)點在棱上且平面,求線段的長度;
(2)在(1)的條件下,求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com