【題目】設函數(shù)f(x)=sin( ﹣ )﹣2cos2 +1. (Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函數(shù)y=g(x)與y=f(x)的圖象關于直線x=1對稱,求當x∈[0, ]時y=g(x)的最大值.
【答案】解:(Ⅰ)化簡可得 x = sin( ),
∴f(x)的最小正周期為 ;
(Ⅱ)在y=g(x)的圖象上任取一點(x,g(x)),
則它關于x=1的對稱點(2﹣x,g(x))在y=f(x)的圖象上,
∴g(x)=f(2﹣x)= sin[ (2﹣x)﹣ ]
= sin( ﹣ x﹣ )= cos( x+ )
當 時, ,
∴y=g(x)在區(qū)間 上的最大值為
【解析】(Ⅰ)化簡可得f(x)= sin( ),由周期公式可得;(Ⅱ)在y=g(x)的圖象上任取一點(x,g(x)),則它關于x=1的對稱點(2﹣x,g(x))在y=f(x)的圖象上,可得g(x)=f(2﹣x)= cos( x+ ),由 結合余弦函數(shù)的單調性可得.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=lg(x2﹣3x)的定義域為集合A,函數(shù) 的定義域為集合B(其中a∈R,且a>0).
(1)當a=1時,求集合B;
(2)若A∩B≠,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下判斷正確的個數(shù)是( )
①相關系數(shù)值越小,變量之間的相關性越強.
②命題“存在”的否定是“不存在”.
③“”為真是“”為假的必要不充分條件.
④若回歸直線的斜率估計值是1.23,樣本點的中心為(4,5),則回歸直線方程是.
A. 4 B. 2 C. 3 D. 1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx的極值點為x=﹣ 和x=1
(1)求b,c的值與f(x)的單調區(qū)間
(2)當x∈[﹣1,2]時,不等式f(x)<m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:
①f(x)=axg(x)(a>0,a≠1);
②g(x)≠0;
③f(x)g'(x)>f'(x)g(x);
若 ,則a= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com