(08年赤峰二中模擬理)

數(shù)列{an}滿足a1 = 2, a1 + a2 + a3 = 12, 且an - 2an + 1 + an + 2 = 0 (n Î N*).

       (Ⅰ) 求數(shù)列{an}的通項(xiàng)公式;

   (Ⅱ) 令bn = + 2n - 1 × an, 求數(shù)列{bn}的前n項(xiàng)和.

解析:(Ⅰ) 因?yàn)?I>an - 2an + 1 + an + 2 = 0 (n Î N*), 所以數(shù)列{an}為等差數(shù)列,

a1 + a2 + a3 = 12, 所以 a2 = 4,

因?yàn)?I>a1 = 2, 所以an = a1 + (n - 1)(a2 a1) = 2n.

(Ⅱ) 由(Ⅰ)得bn =+ 2n× n,

cn =, dn = 2n× n,  則

 c1 + c2 + ¼ + cn

= ++ ¼ +

= (1 -) + (-) + ¼ + (-)

= 1 -,

d1 + d2 + ¼ + dn

= 1 × 21 + 2 × 22 + 3 × 23 + ¼ + n × 2n

2d1 + 2d2 + ¼ + 2dn

= 1 × 22 + 2 × 23 + 3 × 24 + ¼ + n × 2n + 1,

d1 + d2 + ¼ + dn

= - 21 - 22 - 23 - ¼ - 2n + n × 2n + 1

= (n - 1) × 2n + 2,

b1 + b2 + ¼ + bn

= (c1 + c2 + ¼ + cn) + (d1 + d2 + ¼ + dn)

= (n - 1) × 2n +1  -+ 3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年赤峰二中模擬理)   2008年北京奧運(yùn)會乒乓球比賽將產(chǎn)生男子單打、女子單打、男子團(tuán)體、女子團(tuán)體共四枚金牌, 保守估計(jì)中國乒乓球男隊(duì)獲得每枚金牌的概率均為, 中國乒乓球女隊(duì)獲得每枚金牌的概率均為.

(Ⅰ) 求按此估計(jì)中國乒乓球女隊(duì)比中國乒乓球男隊(duì)多獲得一枚金牌的概率;

(Ⅱ) 記中國乒乓球隊(duì)獲得金牌的總數(shù)為x, 按此估計(jì)求x的分布列和數(shù)學(xué)期望Ex. (結(jié)果均用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年赤峰二中模擬理) 已知F1(- 2, 0), F2 (2, 0), 點(diǎn)P滿足| PF1| - | PF2| = 2, 記點(diǎn)P的軌跡為E.

(Ⅰ) 求軌跡E的方程;

(Ⅱ) 若直線l過點(diǎn)F2且與軌跡E交于P、Q兩點(diǎn),

①無論直線l繞點(diǎn)F2怎樣轉(zhuǎn)動(dòng), 在x軸上總存在定點(diǎn)M(m, 0), 使MP ^ MQ恒成立, 求實(shí)數(shù)m的值;

②過P、Q作直線x =的垂線PA、QB, 垂足分別為A、B, 記l =, 求l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年赤峰二中模擬理)設(shè)函數(shù)f(x) = lnx - ax + 1.

(Ⅰ) 若函數(shù)f(x)為單調(diào)函數(shù), 求實(shí)數(shù)a 的取值范圍;

(Ⅱ) 當(dāng)a > 0時(shí), 恒有f(x) £ 0, 求a的取值范圍;

(Ⅲ) 證明: ( n Î N, n ³ 2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年赤峰二中模擬文)  已知函數(shù)

   (Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;

   (Ⅱ)當(dāng)時(shí),討論曲線軸的公共點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年赤峰二中模擬文) 已知如圖橢圓為其右焦點(diǎn),A為左頂點(diǎn),橢圓的右準(zhǔn)線方程為,長軸長為4.過F的直線與橢圓交于異于A的P、Q兩點(diǎn).

(1)求橢圓方程;

(2)求的取值范圍.

  

查看答案和解析>>

同步練習(xí)冊答案