如圖,在平面直角坐標系中,已知拋物線,設點,,為拋物線上的動點(異于頂點),連結并延長交拋物線于點,連結、并分別延長交拋物線于點、,連結,設、的斜率存在且分別為、.
(1)若,,,求;
(2)是否存在與無關的常數,是的恒成立,若存在,請將用、表示出來;若不存在請說明理由.
科目:高中數學 來源: 題型:解答題
如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.
(1)求橢圓方程;
(2)設是橢圓上異于的一點,直線交于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設與直線交于點,試證明:直線與軸的交點為定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點、,且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:,定點M(0,5),直線與軸交于點F,O為原點,若以OM為直徑的圓恰好過與拋物線C的交點.
(1)求拋物線C的方程;
(2)過點M作直線交拋物線C于A,B兩點,連AF,BF延長交拋物線分別于,求證: 拋物線C分別過兩點的切線的交點Q在一條定直線上運動.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,已知橢圓的兩個焦點分別為、,且到直線的距離等于橢圓的短軸長.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經過、,是橢圓上的動點且在圓外,過作圓的切線,切點為,當的最大值為時,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左、右焦點分別為、,為原點.
(1)如圖1,點為橢圓上的一點,是的中點,且,求點到軸的距離;
(2)如圖2,直線與橢圓相交于、兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓過定點,圓心在拋物線上,、為圓與軸的交點.
(1)當圓心是拋物線的頂點時,求拋物線準線被該圓截得的弦長.
(2)當圓心在拋物線上運動時,是否為一定值?請證明你的結論.
(3)當圓心在拋物線上運動時,記,,求的最大值,并求出此時圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的兩個焦點是F1(c,0),F2(c,0)(c>0)。
(I)若直線與橢圓C有公共點,求的取值范圍;
(II)設E是(I)中直線與橢圓的一個公共點,求|EF1|+|EF2|取得最小值時,橢圓的方程;
(III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點A,B,點Q滿足 且,其中N為橢圓的下頂點,求直線l在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,短軸長為4,且有一個焦點與拋物線的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經過定點M(2,0)且斜率不為0的直線交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得始終平分?若存在,求出點坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com