【題目】已知函數(shù)是奇函數(shù)
(1)求的值;
(2)當(dāng)時(shí),求不等式成立,求的取值范圍;
【答案】(1)k=﹣1;(2)見(jiàn)解析
【解析】
(1)可根據(jù)條件得出f(x)是R上的奇函數(shù),從而得出f(0)=0,從而求出k=﹣1;
(2)f(x)=ax﹣a﹣x,求導(dǎo)得出f′(x)=(ax﹣a﹣x)lna,可討論a,根據(jù)導(dǎo)數(shù)符號(hào)判斷f(x)在(﹣1,1)上的單調(diào)性,這樣根據(jù)f(x)是奇函數(shù)以及f(x)的單調(diào)性即可由不等式f(1﹣m)+f(1﹣2m)<0得出關(guān)于m的不等式組,解不等式組即可得出m的范圍.
(1)∵f(x)是R上的奇函數(shù),∴f(0)=1+k=0,∴k=﹣1;
(2)f(x)=ax﹣a﹣x,f′(x)=(ax+a﹣x)lna,
∴①0<a<1時(shí),f′(x)<0,f(x)在(﹣1,1)上單調(diào)遞減,且f(x)是奇函數(shù),
∴由f(1﹣m)+f(1﹣2m)<0得,f(1﹣m)<f(2m﹣1),
∴,解得;
②a>1時(shí),f′(x)>0,f(x)在(﹣1,1)上單調(diào)遞增,且f(x)是奇函數(shù),
∴由f(1﹣m)+f(1﹣2m)<0得,f(1﹣m)<f(2m﹣1),
∴,解得,
綜上:當(dāng)0<a<1時(shí),m的取值范圍為,當(dāng)a>1時(shí),m的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書(shū)中把三角形的田稱為“圭田”,把直角梯形的田稱為“邪田”,稱底是“廣”,稱高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機(jī)種植一株茶樹(shù),求該株茶樹(shù)恰好種在圭田內(nèi)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“或作品獲得一等獎(jiǎng)”; 乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”; 丁說(shuō):“作品獲得一等獎(jiǎng)”.
若這四位同學(xué)只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是( )
A. 作品 B. 作品 C. 作品 D. 作品
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德國(guó)數(shù)學(xué)家科拉茨年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘加(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第項(xiàng)為(注:可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓+=1(a>b>0)上的點(diǎn)P到左,右兩焦點(diǎn)F1,F2的距離之和為2,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)F2的直線l交橢圓于A,B兩點(diǎn),若y軸上一點(diǎn)M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,平面.
(1)證明:平面;
(2)過(guò)點(diǎn)作一平行于平面的截面,畫(huà)出該截面,說(shuō)明理由,并求夾在該截面與平面之間的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為3的正方形,平面,,且,.
(1)試在線段上確定一點(diǎn)的位置,使得平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,平面ABC,,E是BC的中點(diǎn),.
求異面直線AE與所成的角的大小;
若G為中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)及函數(shù)(a,b,c∈R),若a>b>c且a+b+c=0.
(1)證明:f(x)的圖像與g(x)的圖像一定有兩個(gè)交點(diǎn);
(2)請(qǐng)用反證法證明:;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com