(本題滿分10分)
設函數.
(1)解不等式;
(2)若關于的不等式的解集不是空集,試求的取值范圍.
:(1) ;(2) 。
解析試題分析:(1)當x≥1時,=3x+1>6,所以;
當時,=2-2x+x+3=5-x>6,所以x<-1,所以-3≤x<-1;
當x<-3時,=2-2x-x-3=-3x-1>6,所以,所以x<-3.
綜上知不等式的解集為 --------5分
(2) ,所以f(x)的最小值為4,所以要滿足不等式的解集不是空集,需,
所以實數a的取值范圍為 --------5分
考點:含絕對值不等式的解法;函數的最值。
點評:解含絕對值不等式的主要方法是:①利用“零點分段法”進行分段討論,體想了分類討論的數學思想。②利用絕對值不等式的幾何意義來求解,體現(xiàn)了數形結合的思想。
科目:高中數學 來源: 題型:解答題
已知不等式.
(1)若對不等式恒成立,求實數的取值范圍;
(2)若對不等式恒成立,求實數的取值范圍;
(3)若對滿足的一切m的值不等式恒成立,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com