【題目】已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,,若球的表面積為,則三棱錐的側(cè)面積的最大值為( )

A. B. C. D.

【答案】A

【解析】

由題意畫出圖形,設(shè)球O得半徑為R,AB=x,AC=y,由球O的表面積為29π,可得x2+y2=25,寫出側(cè)面積,再由基本不等式求最值.

設(shè)球O得半徑為R,AB=x,AC=y,

由4πR2=29π,得4R2=29.又x2+y2+22=(2R)2,得x2+y2=25.三棱錐A-BCD的側(cè)面積:S=SABD+SACD+SABC=由x2+y2≥2xy,得xy≤當(dāng)且僅當(dāng)x=y=時(shí)取等號,由(x+y)2=x2+2xy+y2≤2(x2+y2),得x+y≤5,當(dāng)且僅當(dāng)x=y=時(shí)取等號,∴S≤5+=當(dāng)且僅當(dāng)x=y=時(shí)取等號. ∴三棱錐A-BCD的側(cè)面積的最大值為.故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某日A, B, C三個(gè)城市18個(gè)銷售點(diǎn)的小麥價(jià)格如下表:

銷售點(diǎn)序號

所屬城市

小麥價(jià)格(元/噸)

銷售點(diǎn)序號

所屬城市

小麥價(jià)格(元/噸)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(Ⅰ)求B市5個(gè)銷售點(diǎn)小麥價(jià)格的中位數(shù);

(Ⅱ)甲從B市的銷售點(diǎn)中隨機(jī)挑選一個(gè)購買1噸小麥,乙從C市的銷售點(diǎn)中隨機(jī)挑選一個(gè)購買1噸小麥,求甲花費(fèi)的費(fèi)用比乙高的概率;

(Ⅲ)如果一個(gè)城市的銷售點(diǎn)小麥價(jià)格方差越大,則稱其價(jià)格差異性越大.請你對A、B、C三個(gè)城市按照小麥價(jià)格差異性從大到小進(jìn)行排序(只寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個(gè)單位長度,再向下平移個(gè)單位長度,得到函數(shù)的圖像.

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)在銳角中,角的對邊分別為,若,,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓W:的左焦點(diǎn)作直線交橢圓于兩點(diǎn),其中 ,另一條過的直線交橢圓于兩點(diǎn)(不與重合),且點(diǎn)不與點(diǎn)重合.軸的垂線分別交直線,,.

(Ⅰ)求點(diǎn)坐標(biāo)和直線的方程;

(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),數(shù)列滿足條件:對于,,且,并有關(guān)系式:,又設(shè)數(shù)列滿足(,).

1)求證數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)試問數(shù)列是否為等差數(shù)列,如果是,請寫出公差,如果不是,說明理由;

3)若,記,,設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,若對任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計(jì)這200名學(xué)生的平均分;

3)若這200名學(xué)生的數(shù)學(xué)成績中,某些分?jǐn)?shù)段的人數(shù)與英語成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如表所示,求英語成績在的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

回歸直線恒過樣本點(diǎn)的中心,且至少過一個(gè)樣本點(diǎn);

兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1;

將一組數(shù)據(jù)的每個(gè)數(shù)據(jù)都加一個(gè)相同的常數(shù)后,方差不變;

在回歸直線方程 中,當(dāng)解釋變量x增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5;

在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對于預(yù)報(bào)變量的貢獻(xiàn)率,越接近于1,表示回歸效果越好;

對分類變量,它們的隨機(jī)變量的觀測值來說, 越小,有關(guān)系的把握程度越大.

兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.

則正確命題的個(gè)數(shù)是(

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)零點(diǎn),證明:.

查看答案和解析>>

同步練習(xí)冊答案