【題目】已知數(shù)列滿(mǎn)足,.

1)求數(shù)列的通項(xiàng)公式;

2)已知數(shù)列的通項(xiàng)公式為,若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.

3)設(shè),是否存在正整數(shù),使得數(shù)列中存在某項(xiàng)滿(mǎn)足成等差數(shù)列?若存在,求出符合題意的的集合;若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2;(3)存在,的集合為4,6,10,18

【解析】

1)求得數(shù)列的首項(xiàng),再將換為,兩式相除,化簡(jiǎn),結(jié)合等差數(shù)列的定義和通項(xiàng)公式,可得所求;

2)求得,運(yùn)用作差判斷數(shù)列的單調(diào)性,可得最小值,結(jié)合不等式恒成立問(wèn)題解法,可得,由對(duì)數(shù)函數(shù)的單調(diào)性可得所求的范圍;

3)求得,假設(shè)存在正整數(shù),使得數(shù)列中存在滿(mǎn)足,,成等差數(shù)列,運(yùn)用等差數(shù)列的中項(xiàng)性質(zhì)和整除的性質(zhì),可判斷存在性.

1)數(shù)列滿(mǎn)足,

可得時(shí),,即

時(shí),,又,

兩式相除可得,化為,

即數(shù)列為首項(xiàng)為2,公差為1的等差數(shù)列,可得

2,

設(shè),

,

可得,

則數(shù)列為遞增數(shù)列,的最小值為

對(duì)于一切,不等式恒成立,

可得,即有

解得:

3)設(shè),則,

假設(shè)存在正整數(shù),使得數(shù)列中存在滿(mǎn)足,,,成等差數(shù)列,

可得,即,

當(dāng)時(shí),無(wú)解;當(dāng)時(shí),,

為正整數(shù),為不小于6的正整數(shù),可得,24,816,32

,25,17,13,1110,滿(mǎn)足題意,

故存在正整數(shù),使得數(shù)列中存在滿(mǎn)足,,成等差數(shù)列,

的集合為,4,6,10,18

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)某款機(jī)器零件,因?yàn)橐缶缺容^高,所以需要對(duì)生產(chǎn)的一大批零件進(jìn)行質(zhì)量檢測(cè).首先由專(zhuān)家根據(jù)各種系數(shù)制定了質(zhì)量指標(biāo)值,從生產(chǎn)的大批零件中選取100件作為樣本進(jìn)行評(píng)估,根據(jù)評(píng)估結(jié)果作出如圖所示的頻率分布直方圖.

1)(。└鶕(jù)直方圖求及這100個(gè)零件的樣本平均數(shù)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(ⅱ)以樣本估計(jì)總體,經(jīng)過(guò)專(zhuān)家研究,零件的質(zhì)量指標(biāo)值,試估計(jì)10000件零件質(zhì)量指標(biāo)值在內(nèi)的件數(shù);

2)設(shè)每個(gè)零件利潤(rùn)為元,質(zhì)量指標(biāo)值為,利潤(rùn)與質(zhì)量指標(biāo)值之間滿(mǎn)足函數(shù)關(guān)系.假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試估算該批零件的平均利潤(rùn).(結(jié)果四舍五入,保留整數(shù))

參考數(shù)據(jù):,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為分別為的左頂點(diǎn)和上頂點(diǎn),若的中點(diǎn)的縱坐標(biāo)為.分別為的左、右焦點(diǎn).

1)求橢圓的方程;

2)設(shè)直線(xiàn)交于兩點(diǎn),,的重心分別為.若原點(diǎn)在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某外國(guó)語(yǔ)學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)填寫(xiě)下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過(guò)的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.

女生

男生

總計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

總計(jì)

附表及公式:

其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大荔縣某高中一社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖.將日均學(xué)習(xí)圍棋時(shí)不低于分鐘的學(xué)生稱(chēng)為“圍棋迷”.

非圍棋迷

圍棋迷

合計(jì)

合計(jì)

1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

2)現(xiàn)在從參與本次抽樣調(diào)查的名學(xué)生的男同學(xué)里面,依據(jù)是否為圍棋迷,采用分層抽樣的方法抽取名學(xué)生參與圍棋知識(shí)競(jìng)賽,再?gòu)?/span>人中任選人參與知識(shí)競(jìng)賽的賽前保障工作.求選到的人恰好是一個(gè)“圍棋迷”和一個(gè)“非圍棋迷”的概率?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù),其中

)若的極值點(diǎn),求的值;

)求的單調(diào)區(qū)間;

)若上的最大值是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),過(guò)動(dòng)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為,且.記動(dòng)點(diǎn)的軌跡為曲線(xiàn).

1)求曲線(xiàn)的方程;

2)過(guò)點(diǎn)的直線(xiàn)交曲線(xiàn)于不同的兩點(diǎn),.

①若為線(xiàn)段的中點(diǎn),求直線(xiàn)的方程;

②設(shè)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年下半年以來(lái),各地區(qū)陸續(xù)出臺(tái)了“垃圾分類(lèi)”的相關(guān)管理?xiàng)l例,實(shí)行“垃圾分類(lèi)”能最大限度地減少垃圾處置量,實(shí)現(xiàn)垃圾資源利用,改善生存環(huán)境質(zhì)量.某部門(mén)在某小區(qū)年齡處于區(qū)間內(nèi)的人中隨機(jī)抽取人進(jìn)行了“垃圾分類(lèi)”相關(guān)知識(shí)掌握和實(shí)施情況的調(diào)查,并把達(dá)到“垃圾分類(lèi)”標(biāo)準(zhǔn)的人稱(chēng)為“環(huán)保族”,得到圖各年齡段人數(shù)的頻率分布直方圖和表中統(tǒng)計(jì)數(shù)據(jù).

1)求的值;

2)根據(jù)頻率分布直方圖,估計(jì)這人年齡的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,結(jié)果保留整數(shù));

3)從年齡段在的“環(huán)保族”中采用分層抽樣的方法抽取9人進(jìn)行專(zhuān)訪,并在這9人中選取2人作為記錄員,求選取的2名記錄員中至少有一人年齡在區(qū)間中的概率.

組數(shù)

分組

“環(huán)保族”人數(shù)

占本組頻率

第一組

45

0.75

第二組

25

第三組

0.5

第四組

3

0.2

第五組

3

0.1

查看答案和解析>>

同步練習(xí)冊(cè)答案