【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知.
(1)求角C的值;
(2)若c=2,且△ABC的面積為,求a,b.
【答案】(1) (2)a=b=2
【解析】
(1)首先利用降次公式、三角形的內角和定理、兩角和的余弦公式化簡已知條件,得到,由此求得的值.(2)利用三角形的面積公式和余弦定理列方程組,解方程組可求得的值.
解:(1)2cos2+(cosB-sinB)cosC=1,故cosA+cosBcosC-sinBcosC=0,
則-cos(B+C)+cosBcosC-sinBcosC=0,
展開得:sinBsinC-sinBcosC=0,
∵sinB≠0,即tanC=,∵C∈(0,π),C=.
(2)三角形面積為absin=,故ab=4.
由余弦定理得4=(a+b)2-2ab-ab,所以a+b=4,
故a=b=2.
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國民法總則》(以下簡稱《民法總則》)自2017年10月1日起施行.作為民法典的開篇之作,《民法總則》與每個人的一生息息相關.某地區(qū)為了調研本地區(qū)人們對該法律的了解情況,隨機抽取50人,他們的年齡都在區(qū)間上,年齡的頻率分布及了解《民法總則》的入數(shù)如下表:
年齡 | ||||||
頻數(shù) | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法總則》 | 1 | 2 | 8 | 12 | 4 | 5 |
(1)填寫下面列聯(lián)表,并判斷是否有的把握認為以45歲為分界點對了解《民法總則》政策有差異;
年齡低于45歲的人數(shù) | 年齡不低于45歲的人數(shù) | 合計 | |
了解 | |||
不了解 | |||
合計 |
(2)若對年齡在,的被調研人中各隨機選取2人進行深入調研,記選中的4人中不了解《民法總則》的人數(shù)為,求隨機變量的分布列和數(shù)學期望.
參考公式和數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《五曹算經》是我國南北朝時期數(shù)學家甄鸞為各級政府的行政人員編撰的一部實用算術書.其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問粟幾何?”其意思為“場院內有圓錐形稻谷堆,底面周長3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有( )
A.57.08斜B.171.24斛C.61.73斛D.185.19斛
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中有四個小球,分別寫有“五、校、聯(lián)、考”四個字,從中任取一個小球,有放回抽取,直到取到“五”“校”二字就停止,用隨機模擬的方法估計恰好在第三次停止的概率:利用電腦隨機產生0到3之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表“五、校、聯(lián)、考”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結果,經隨機模擬產生了以下16組隨機數(shù),由此可以估計,恰好第三次就停止的概率為______
232 321 230 023 123 021 132 220
231 130 133 231 331 320 120 233
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為,,,假設各盤比賽結果相互獨立.
(I)求紅隊至少兩名隊員獲勝的概率;
(II)用表示紅隊隊員獲勝的總盤數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場銷售某件商品的經驗表明,該商品每日的銷量 (單位:千克)與銷售價格 (單位:元/千克)滿足關系式,其中,為常數(shù).已知銷售價格為元/千克時,每日可售出該商品千克.
(1)求實數(shù)的值;
(2)若該商品的成本為元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關于回歸分析的說法中錯誤的有( )個
(1). 殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預報精確度越高.
(2). 回歸直線一定過樣本中心。
(3). 兩個模型中殘差平方和越小的模型擬合的效果越好。
(4) .甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合,m∈R.
(1)若m=3,求A∩B;
(2)已知命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com