A. | $\frac{{2\sqrt{39}}}{13}$ | B. | $\frac{{\sqrt{13}}}{13}$ | C. | $\frac{{2\sqrt{39}}}{3}$ | D. | $\frac{{2\sqrt{13}}}{13}$ |
分析 由△ABC的面積 求出c,再由余弦定理求出b,再由正弦定理求出sinC=$\frac{csinB}$的值.
解答 解:∵由△ABC的面積$\sqrt{3}$=$\frac{1}{2}$acsin$\frac{π}{3}$,a=1,可得:c=4,
再由余弦定理可得:b2=a2+c2-2accosB=1+16-2×1×4×$\frac{1}{2}$=13,可得b=$\sqrt{13}$.
再由正弦定理可得:$\frac{4}{sinC}=\frac{\sqrt{13}}{sin\frac{π}{3}}$,
∴解得:sinC=$\frac{2\sqrt{39}}{13}$,
故選:A.
點(diǎn)評(píng) 本題主要考查了正弦定理、余弦定理的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x-2 | B. | 4x+1 | C. | 4x-2 | D. | 2x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{1}{x})'=-\frac{1}{x^2}$ | B. | (cos(2x+1))′=-2sin(2x+1) | ||
C. | $(x{log_a}x)'={log_a}x+\frac{1}{lna}$ | D. | $(\frac{{e}^{x}}{x})′=\frac{{e}^{x}•x+{e}^{x}}{{x}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 2 $\sqrt{2}$ | D. | 3 $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | -10 | C. | 40 | D. | -40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{n}{π}$ | B. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+1)π}$ | ||
C. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n-2)π}$ | D. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+2)π}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com