【題目】設(shè)實(shí)數(shù)滿足不等式函數(shù)無極值點(diǎn)

1為假命題,為真命題,求實(shí)數(shù)的取值范圍;

2已知為真命題,并記為,且,若的必要不充分條件,求正整數(shù)的值

【答案】1;2

【解析】

試題分析:,得;函數(shù)無極值點(diǎn),恒成立,得,解得.(1為假命題,為真命題,則只有一個(gè)命題是真命題,分成假和真兩類來求的取值范圍2為真命題,兩個(gè)都是真命題,所以因式分解得,解得,,的必要不充分條件得,解得,所以

試題解析:

,得,即................1分

函數(shù)無極值點(diǎn),恒成立,得,解得,

..................................3分

1∵“為假命題,為真命題,只有一個(gè)命題是真命題

為真命題,為假命題,則;.....................5分

為真命題,為假命題,則..............6分

于是,實(shí)數(shù)的取值范圍為.....................7分

2∵“為真命題,..............8分

,

,...................10分

,從而,

的必要不充分條件,即的充分不必要條件,

,解得,..................12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1求函數(shù)的極值;

2設(shè),比較與1的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a2=5,S5=40.等比數(shù)列{bn}中,b1=3,b4=81,

(1)求{an}{bn}的通項(xiàng)公式

(2)令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列滿足為常數(shù)),其中為數(shù)列的前項(xiàng)和.

(1)若,,求證:是等差數(shù)列;

(2)若,,求數(shù)列的通項(xiàng)公式;

(3)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)分別為線段上的點(diǎn),

1求證:平面平面;

2求證:當(dāng)點(diǎn)不與點(diǎn)重合時(shí),平面;

3當(dāng),時(shí),求點(diǎn)到直線距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)EF分別是PC,BD的中點(diǎn)。

1)求證:EF∥平面PAD;

2)求證:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的左、右焦點(diǎn)分別為,右頂點(diǎn)為,上頂點(diǎn)為, 成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為

1求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)為直線上任意一點(diǎn),過的直線交橢圓于點(diǎn),且,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體ABCD中,截面PQMN是正方形,則下列命題中,正確的為________ (填序號(hào)).

ACBD;②AC∥截面PQMN;③ACBD;④異面直線PMBD所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如下圖示.

(Ⅰ)求直方圖中x的值;

(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);

(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

同步練習(xí)冊(cè)答案